Hugelius, G. et al. Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw. Proc. Natl. Acad. Sci. USA. 117, 20438–20446 (2020).
Google Scholar
Yu, Z. et al. No support for carbon storage of >1000 GtC in northern peatlands. Nat. Geosci. 14, 465–467 (2021).
Google Scholar
Temmink, R. J. M. et al. Recovering wetland biogeomorphic feedbacks to restore the world’s biotic carbon hotspots. Science 376, eabn1479 (2022).
Google Scholar
Brovkin, V. et al. Comparative carbon cycle dynamics of the present and last interglacial. Quat. Sci. Rev. 137, 15–32 (2016).
Google Scholar
Limpens, J. et al. Peatlands and the carbon cycle: from local processes to global implications—a synthesis. Biogeosciences 5, 1475–1491 (2008).
Google Scholar
Zhang, H. et al. Decreased carbon accumulation feedback driven by climate-induced drying of two southern boreal bogs over recent centuries. Glob. Chang. Biol. 26, 2435–2448 (2020).
Google Scholar
Charman, D. J. et al. Climate-related changes in peatland carbon accumulation during the last millennium. Biogeosciences 10, 929–944 (2013).
Google Scholar
Gallego-Sala, A. V. et al. Latitudinal limits to the predicted increase of the peatland carbon sink with warming. Nat. Clim. Chang. 8, 907–913 (2018).
Google Scholar
Fenner, N. & Freeman, C. Drought-induced carbon loss in peatlands. Nat. Geosci. 4, 895–900 (2011).
Google Scholar
Loisel, J. et al. Expert assessment of future vulnerability of the global peatland carbon sink. Nat. Clim. Chang. 11, 70–77 (2021).
Google Scholar
Schuur, E. A. G. et al. Climate change and the permafrost carbon feedback. Nature 520, 171–179 (2015).
Google Scholar
Evans, C. D. et al. Overriding water table control on managed peatland greenhouse gas emissions. Nature 593, 548–552 (2021).
Google Scholar
Huang, Y. et al. Tradeoff of CO2 and CH4 emissions from global peatlands under water-table drawdown. Nat. Clim. Chang. 11, 618–622 (2021).
Google Scholar
Kuang, X. & Jiao, J. J. Review on climate change on the Tibetan Plateau during the last half century. J. Geophys. Res. Atmos. 121, 3979–4007 (2016).
Google Scholar
Chen, H. et al. Carbon and nitrogen cycling on the Qinghai–Tibetan Plateau. Nat. Rev. Earth Environ. 3, 701–716 (2022).
Google Scholar
Mu, C. et al. The status and stability of permafrost carbon on the Tibetan Plateau. Earth Sci. Rev. 211, 103433 (2020).
Google Scholar
Wei, D. et al. Revisiting the role of CH4 emissions from alpine wetlands on the Tibetan Plateau: Evidence from two in situ measurements at 4758 and 4320 m above sea level. J. Geophys. Res. Biogeosci. 120, 1741–1750 (2015).
Google Scholar
Wang, M. et al. Carbon dynamics of peatlands in China during the Holocene. Quat. Sci. Rev. 99, 34–41 (2014).
Google Scholar
Yu, Z., Beilman, D. W. & Jones, M. C. Sensitivity of northern peatland carbon dynamics to Holocene climate change. in Carbon cycling in northern peatlands (eds Baird, A.J. et al.) 55–69 (American Geophysical Union, 2009).
Wei, D., Zhao, H., Huang, L., Qi, Y. & Wang, X. Feedbacks of alpine wetlands on the Tibetan Plateau to the atmosphere. Wetlands 40, 787–797 (2020).
Google Scholar
Xue, Z. et al. Spatial and temporal changes of wetlands on the Qinghai-Tibetan Plateau from the 1970s to 2010s. Chin. Geogr. Sci. 28, 935–945 (2018).
Google Scholar
Ren, Y. et al. China’s wetland soil organic carbon pool: new estimation on pool size, change, and trajectory. Glob. Chang. Biol. 29, 6139–6156 (2023).
Google Scholar
Wei, D. et al. Plant uptake of CO2 outpaces losses from permafrost and plant respiration on the Tibetan Plateau. Proc. Natl. Acad. Sci. USA. 118, e2015283118 (2021).
Google Scholar
Flanagan, L. B. & Syed, K. H. Stimulation of both photosynthesis and respiration in response to warmer and drier conditions in a boreal peatland ecosystem. Glob. Chang. Biol. 17, 2271–2287 (2011).
Google Scholar
Holmes, M. E. et al. Carbon accumulation, flux, and fate in Stordalen Mire, a permafrost peatland in transition. Glob. Biogeochem. Cycles 36, e2021GB007113 (2022).
Google Scholar
Ratcliffe, J. et al. Contemporary carbon fluxes do not reflect the long-term carbon balance for an Atlantic blanket bog. Holocene 28, 140–149 (2018).
Google Scholar
Chen, H. et al. The carbon stock of alpine peatlands on the Qinghai–Tibetan Plateau during the Holocene and their future fate. Quat. Sci. Rev. 95, 151–158 (2014).
Google Scholar
Wang, M. et al. Higher recent peat C accumulation than that during the Holocene on the Zoige Plateau. Quat. Sci. Rev. 114, 116–125 (2015).
Google Scholar
Large, D. J. et al. The influence of climate, hydrology and permafrost on Holocene peat accumulation at 3500 m on the eastern Qinghai–Tibetan Plateau. Quat. Sci. Rev. 28, 3303–3314 (2009).
Google Scholar
Zeng, M., Zhu, C., Song, Y., Ma, C. & Yang, Z. Paleoenvironment change and its impact on carbon and nitrogen accumulation in the Zoige wetland, northeastern Qinghai-Tibetan Plateau over the past 14,000 years. Geochem. Geophys. Geosyst. 18, 1775–1792 (2017).
Google Scholar
Herzschuh, U., Winter, K., Wünnemann, B. & Li, S. A general cooling trend on the central Tibetan Plateau throughout the Holocene recorded by the Lake Zigetang pollen spectra. Quat. Int. 154-155, 113–121 (2006).
Google Scholar
Herzschuh, U., Kramer, A., Mischke, S. & Zhang, C. Quantitative climate and vegetation trends since the late glacial on the northeastern Tibetan Plateau deduced from Koucha Lake pollen spectra. Quat. Res. 71, 162–171 (2009).
Google Scholar
Cheung, M.-C., Zong, Y., Zheng, Z., Liu, Z. & Aitchison, J. C. Holocene temperature and precipitation variability on the central Tibetan Plateau revealed by multiple palaeo-climatic proxy records from an alpine wetland sequence. Holocene 27, 1669–1681 (2017).
Google Scholar
Chen, F. et al. Climate change, vegetation history, and landscape responses on the Tibetan Plateau during the Holocene: A comprehensive review. Quat. Sci. Rev. 243, 106444 (2020).
Google Scholar
Zhang, C. et al. Seasonal imprint of Holocene temperature reconstruction on the Tibetan Plateau. Earth Sci. Rev. 226, 103927 (2022).
Google Scholar
Li, Y. et al. Control of local topography and surface patterning on the formation and stability of a slope permafrost peatland at 4800-m elevation on the central Qinghai-Tibetan Plateau. Ecol. Indic. 158, 111475 (2024).
Google Scholar
Wang, Q.-F. et al. Non-climate environmental factors matter to Holocene dynamics of soil organic carbon and nitrogen in an alpine permafrost wetland, Qinghai‒Tibet Plateau. Adv. Clim. Chang. Res. 14, 213–225 (2023).
Google Scholar
Zhang, H. & Väliranta, M. To better detect drivers of peatland carbon accumulation rates and patterns. Environ. Res. Lett. 19, 041004 (2024).
Google Scholar
Loisel, J. et al. Insights and issues with estimating northern peatland carbon stocks and fluxes since the Last Glacial Maximum. Earth Sci. Rev. 165, 59–80 (2017).
Google Scholar
Xia, Z., Oppedal, L. T., Van der Putten, N., Bakke, J. & Yu, Z. Ecological response of a glacier-fed peatland to late Holocene climate and glacier changes on subantarctic South Georgia. Quat. Sci. Rev. 250, 106679 (2020).
Google Scholar
Cleary, K. G., Xia, Z. & Yu, Z. The growth and carbon sink of tundra peat patches in Arctic Alaska. J. Geophys. Res. Biogeosci. 129, e2023JG007890 (2024).
Google Scholar
Magnan, G. et al. Widespread recent ecosystem state shifts in high-latitude peatlands of northeastern Canada and implications for carbon sequestration. Glob. Chang. Biol. 28, 1919–1934 (2022).
Google Scholar
Xia, Y., Yang, Z., Sun, J., Xia, Z. & Yu, Z. Late-Holocene ecosystem dynamics and climate sensitivity of a permafrost peatland in Northeast China. Quat. Sci. Rev. 324, 108466 (2024).
Google Scholar
Yang, Q., Liu, Z. & Bai, E. Comparison of carbon and nitrogen accumulation rate between bog and fen phases in a pristine peatland with the fen-bog transition. Glob. Chang. Biol. 29, 6350–6366 (2023).
Google Scholar
Sun, J. Climatic and Topographic Effect on the Distribution and Dynamics of Peatlands on the Tibetan Plateau: Past and Future. Ph. D. Dissertation (Northeast Normal University, 2024).
Gao, Y. & Couwenberg, J. Carbon accumulation in a permafrost polygon peatland: steady long-term rates in spite of shifts between dry and wet conditions. Glob. Chang. Biol. 21, 803–815 (2015).
Google Scholar
Jones, M. C. et al. Rapid carbon loss and slow recovery following permafrost thaw in boreal peatlands. Glob. Chang. Biol. 23, 1109–1127 (2017).
Google Scholar
Krüger, J. P., Conen, F., Leifeld, J. & Alewell, C. Palsa uplift identified by stable isotope depth profiles and relation of δ15N to C/N ratio. Permafrost Periglacial Process. 28, 485–492 (2017).
Google Scholar
Barral, U. M. et al. Can anthropization govern the water and carbon dynamics? A case study of peatlands in Serra do Espinhaço Meridional, Brazil. Wetl. Ecol. Manag. 31, 479–497 (2023).
Google Scholar
Philben, M., Kaiser, K. & Benner, R. Does oxygen exposure time control the extent of organic matter decomposition in peatlands? J. Geophys. Res. Biogeosci. 119, 897–909 (2014).
Google Scholar
Young, D. M., Baird, A. J., Gallego-Sala, A. V. & Loisel, J. A cautionary tale about using the apparent carbon accumulation rate (aCAR) obtained from peat cores. Sci. Rep. 11, 9547 (2021).
Google Scholar
Miehe, G. et al. The Kobresia pygmaea ecosystem of the Tibetan highlands—origin, functioning and degradation of the world’s largest pastoral alpine ecosystem: Kobresia pastures of Tibet. Sci. Total Environ. 648, 754–771 (2019).
Google Scholar
Wang, C. et al. Changes in plant biomass and species composition of alpine Kobresia meadows along altitudinal gradient on the Qinghai-Tibetan Plateau. Sci. China Ser. C-Life Sci. 51, 86–94 (2008).
Google Scholar
Schleuss, P.-M. et al. Nitrogen uptake in an alpine Kobresia pasture on the Tibetan Plateau: localization by 15N labeling and implications for a vulnerable ecosystem. Ecosystems 18, 946–957 (2015).
Google Scholar
Tian, H. et al. Patterns of soil nitrogen storage in China. Glob. Biogeochem. Cycles 20, GB1001 (2006).
Google Scholar
Jackson, R. B. et al. The ecology of soil carbon: pools, vulnerabilities, and biotic and abiotic controls. Annu. Rev. Ecol. Evol. Syst. 48, 419–445 (2017).
Google Scholar
Leifeld, J. & Menichetti, L. The underappreciated potential of peatlands in global climate change mitigation strategies. Nat. Commun. 9, 1071 (2018).
Google Scholar
Hodgkins, S. B. et al. Changes in peat chemistry associated with permafrost thaw increase greenhouse gas production. Proc. Natl. Acad. Sci. USA. 111, 5819 (2014).
Google Scholar
Sun, J., Gallego-Sala, A. & Yu, Z. Topographic and climatic controls of peatland distribution on the Tibetan Plateau. Sci. Rep. 13, 14811 (2023).
Google Scholar
Zhao, Z. et al. Dynamic changes of plateau wetlands in the Damqu River Basin, Yangtze River Source Region, China, 1988–2015. Wetlands 40, 1409–1424 (2020).
Google Scholar
Topp, G. C., Parkin, G. W., Ferré, T. P. A., Carter, M. R. & Gregorich, E. G. Soil water content. in Soil Sampling and Methods of Analysis Vol. 2 (eds. Carter, M. R. & Gregorich, E. G.) 939–962 (CRC Press, 2008).
Harris, D., Horwáth, W. R. & van Kessel, C. Acid fumigation of soils to remove carbonates prior to total organic carbon or CARBON-13 isotopic analysis. Soil Sci. Soc. Am. J. 65, 1853–1856 (2001).
Google Scholar
Leuenberger, M. To what extent can ice core data contribute to the understanding of plant ecological developments of the past? in Terrestrial Ecology Vol. 1 (eds. Dawson, T. E. & Siegwolf, R. T. W.) 211−233 (Elsevier, 2007).
Teickner, H. ir: Functions to handle and preprocess infrared spectra. https://zenodo.org/record/5747170 (2022).
Teickner, H. & Hodgkins, S. B. irpeat: Functions to analyze mid infrared spectra of peat samples. https://github.com/henningte/irpeat (2022).
Loisel, J. et al. A database and synthesis of northern peatland soil properties and Holocene carbon and nitrogen accumulation. Holocene 24, 1028–1042 (2014).
Google Scholar
Yu, Z., Loisel, J., Brosseau, D. P., Beilman, D. W. & Hunt, S. J. Global peatland dynamics since the Last Glacial Maximum. Geophys. Res. Lett. 37, L13402 (2010).
Google Scholar
Zhang, Y. Integration dataset of Tibet Plateau boundary. A Big Earth Data Platform for Three Poles. https://doi.org/10.11888/Geogra.tpdc.270099 (2019).