Meneghini, O. et al. Integrated fusion simulation with self-consistent core-pedestal coupling. Phys. Plasmas. 23, 042507 (2016).
Google Scholar
Kinsey, J. et al. Burning plasma projections using drift-wave transport models and scalings for the H-mode pedestal. Nucl. Fusion. 43, 1845 (2003).
Google Scholar
Snyder, P. B. et al. Stability and dynamics of the edge pedestal in the low collisionality regime: physics mechanisms for steady-state ELM-free operation. Nucl. Fusion. 47, 961 (2007).
Google Scholar
Snyder, P. B. et al. Development and validation of a predictive model for the pedestal height. Phys. Plasmas. 16, 056118 (2009).
Google Scholar
Urano, H. et al. Pedestal structure in H-mode plasmas. Nucl. Fusion. 54, 116001 (2014).
Google Scholar
Snyder, P. B. et al. A first-principles predictive model of the pedestal height and width: development, testing and ITER optimization with the EPED model. Nucl. Fusion. 51, 103016 (2011).
Google Scholar
Candy, J. et al. Tokamak profile prediction using direct gyrokinetic and neoclassical simulation. Phys. Plasmas. 16, 060704 (2009).
Google Scholar
Chen, J. L. et al. Self-consistent modeling of CFETR baseline scenarios for steady-state operation. Plasma Phys. Control. Fusion. 59, 075005 (2017).
Google Scholar
Wu, M. Q. et al. Transport simulation of EAST long-pulse H-mode discharge with integrated modeling. Nucl. Fusion. 58, 046001 (2018).
Google Scholar
Huang, J. et al. Long-pulse high-performance H-mode plasmas achieved on EAST. Phys. Plasmas. 30, 062504 (2023).
Google Scholar
Gong, X. Z. et al. Overview of recent experimental results on the EAST tokamak. Nucl. Fusion. Accepted Manuscript online (2024).
Gong, X. Z. et al. EAST steady-state long pulse H-mode with core-edge integration for CFETR. Nucl. Fusion. 62, 076009 (2022).
Google Scholar
Li, K. et al. Study of H-mode pedestal predictive model on EAST tokamak. Plasma Phys. Control. Fusion. 62, 115007 (2020).
Google Scholar
Lin, X. et al. Physical mechanisms for the transition from type-III to large ELMs induced by impurity injection on EAST. Phys. Lett. A. 431, 127988 (2022).
Google Scholar
Li, K. D. et al. Compatibility of large ELM control and stable partial detachment with neon/argon seeding in EAST. Nucl. Fusion. 63, 026025 (2023).
Google Scholar
Kinsey, J. et al. ITER predictions using the GYRO verified and experimentally validated trapped gyro-Landau fluid transport model. Nucl. Fusion. 51, 083001 (2011).
Google Scholar
Hou, J. L. et al. Deuterium pellet fueling in type-III ELMy H-mode plasmas on EAST superconducting tokamak. Fusion Eng. Des. 145, 79–86 (2019).
Google Scholar
Chen, S. D. et al. Parametric dependence of type-I and type-III ELMS and dynamic characteristics for ELM filaments in EAST tokamak. IEEE Trans. Plasma Sci. 47, 799–806 (2018).
Google Scholar
Oyama, N. et al. Pedestal conditions for small ELM regimes in tokamaks. Plasma Phys. Control. Fusion. 48, A171 (2006).
Google Scholar
Zang, Q. et al. The circuit of polychromator for Experimental Advanced Superconducting Tokamak edge Thomson scattering diagnostic. Rev. Sci. Instrum. 84, 093504 (2013).
Google Scholar
Zhang, S. B. et al. Density profile and fluctuation measurements by microwave reflectometry on EAST. Plasma Sci. Technol. 16, 311 (2014).
Google Scholar
Liu, H. Q. et al. Initial measurements of plasma current and electron density profiles using a polarimeter/interferometer (POINT) for long pulse operation in EAST. Rev. Sci. Instrum. 87, 11D903 (2016).
Google Scholar
Li, Y. Y. et al. First measurement of the edge charge exchange recombination spectroscopy on EAST tokamak. Rev. Sci. Instrum. 87, 11E501 (2016).
Google Scholar
Chen, Y. J. et al. Measurement and analysis of Zeff in EAST tokamak. Plasma Phys. Control. Fusion. 56, 105006 (2014).
Google Scholar
Li, G. Q. et al. Kinetic equilibrium reconstruction on EAST tokamak. Plasma Phys. Control. Fusion. 55, 125008 (2013).
Google Scholar
Groebner, R. J. et al. Progress in quantifying the edge physics of the H mode regime in DIII-D. Nucl. Fusion 41, 1789 (2001).
Google Scholar
Crotinger, J. A., LoDestro, L., Pearlstein, L. D., Tarditi, A., Casper, T. A. and Hooper, E. B. Corsica: a comprehensive simulation of toroidal magnetic-fusion devices. Final report to the LDRD Program (No. UCRL-ID-126284) (1997).
Wilson, H. R. et al. Ideal magnetohydrodynamic stability of the tokamak high-confinement-mode edge region. Phys. Plasmas 6, 1925 (1999).
Google Scholar
Wilson, H. R. et al. Numerical studies of edge localized instabilities in tokamaks. Phys. Plasmas. 9, 1277 (2002).
Google Scholar
Snyder, P. B. et al. Edge localized modes and the pedestal: a model based on coupled peeling–ballooning modes. Phys. Plasmas 9, 2037 (2002).
Google Scholar
Connor, J. W. et al. Magnetohydrodynamic stability of tokamak edge plasmas. Phys. Plasmas 5, 2687 (1998).
Google Scholar
Snyder, P. B. & Wilson, H. R. Ideal magnetohydrodynamic constraints on the pedestal temperature in tokamaks. Plasma Phys. Control Fusion 45, 1671 (2003).
Google Scholar
Sauter, O., Angioni, C. & Lin-Liu, Y. R. Neoclassical conductivity and bootstrap current formulas for general axisymmetric equilibria and arbitrary collisionality regime. Phys. Plasmas. 6, 2834 (1999).
Google Scholar
Sauter, O., Angioni, C. & Lin-Liu, Y. R. Neoclassical conductivity and bootstrap current formulas for general axisymmetric equilibria and arbitrary collisionality regime. Phys. Plasmas. 9, 5140 (2002).
Google Scholar
Zang, Q. et al. Characteristics of edge pedestals in LHW and NBI heated H-mode plasmas on EAST. Nucl. Fusion. 56, 106003 (2016).
Google Scholar
Meneghini, O. et al. Integrated modeling of tokamak experiments with OMFIT. Plasma Fusion Res. 8, 2403009 (2013).
Google Scholar
Meneghini, O. et al. Integrated modeling applications for tokamak experiments with OMFIT. Nucl. Fusion. 55, 083008 (2015).
Google Scholar
Zhai, X. M. et al. Validation of theory-based integrated modeling and new insights for a high-performance steady-state scenario with only RF heating on EAST. Nucl. Fusion. 62, 076015 (2022).
Google Scholar
Lao, L. L. et al. Reconstruction of current profile parameters and plasma shapes in tokamaks. Nucl. Fusion 25, 1611 (1985).
Google Scholar
Pfeiffer, W. W. et al. ONETWO: A Computer Code for Modeling Plasma Transport in Tokamaks. Medium: X; Size: Pages: 201 (General Atomic Co., 1980).
St John, H. et al. Transport simulation of negative magnetic shear discharges. In 15th Int. Conf. on Plasma Physics and Controlled Nuclear Fusion Research, 603 https://doi.org/10.2172/10104519) (IAEA, 1994).
Smirnov, A. et al. Bull Amer. Phys. Soc. 39, 1626 http://compxco.com/Genray_manual.pdf (1994).
Harvey, R. W. & McCoy, M. G. The CQL3D Code Proc. IAEA TCM on Advances in Sim. and Modeling of Thermonuclear Plasmas (ed.) 489–526 (1992).
Staebler, G., Kinsey, J. & Waltz, R. A theory-based transport model with comprehensive physics. Phys. Plasmas. 14, 055909 (2007).
Google Scholar
Belli, E. & Candy, J. An Eulerian method for the solution of the multi-species drift-kinetic equation. Plasma Phys. Control. Fusion. 51, 075018 (2009).
Google Scholar
Glöggler, S. et al. Characterisation of highly radiating neon seeded plasmas in JET-ILW. Nucl. Fusion. 59, 126031 (2019).
Google Scholar
Kallenbach, A. et al. Impurity seeding for tokamak power exhaust: from present devices via ITER to DEMO. Plasma Phys. Control. Fusion. 55, 124041 (2013).
Google Scholar
Eldon, D. et al. An analysis of controlled detachment by seeding various impurity species in high performance scenarios on DIII-D and EAST. Nucl. Mater. Energy. 27, 100963 (2021).
Google Scholar
Xue, G. Q. et al. Enhancement of plasma ion temperature by impurity seeding in H-mode plasmas. Nucl. Fusion. 61, 116048 (2021).
Google Scholar