Corbetta, A. & Toschi, F. Physics of human crowds. Annual Review of Condensed Matter Physics 14, 311–333 (2023).
Google Scholar
Still, G. K. Applied Crowd Science (Crc Press, 2021).
Feliciani, C., Corbetta, A., Haghani, M. & Nishinari, K. Trends in crowd accidents based on an analysis of press reports. Safety Science 164, 106174 (2023).
Marchetti, M. C. et al. Hydrodynamics of soft active matter. Reviews of Modern Physics 85, 1143–1189 (2013).
Google Scholar
Araújo, N. A. et al. Steering self-organisation through confinement. Soft Matter 19, 1695–1704 (2023).
Google Scholar
Hoogendoorn, S. P. & Bovy, P. H. Pedestrian route-choice and activity scheduling theory and models. Transportation Research Part B: Methodological 38, 169–190 (2004).
Google Scholar
Bellomo, N., Liao, J., Quaini, A., Russo, L., & Siettos, C. Human behavioral crowds review, critical analysis, and research perspectives. Mathematical Models and Methods in Applied Sci. 33(08), 1611-1659 (2023)
Corbetta, A., Meeusen, J. A., Lee, C.-M., Benzi, R. & Toschi, F. Physics-based modeling and data representation of pairwise interactions among pedestrians. Physical Review E 98, 062310 (2018).
Google Scholar
Pouw, C. A. S., Corbetta, A., Gabbana, A., van der Laan, C. & Toschi, F. High-statistics pedestrian dynamics on stairways and their probabilistic fundamental diagrams. Transportation Research Part C: Emerging Technologies 159, 104468 (2024).
Zanlungo, F., Ikeda, T. & Kanda, T. Potential for the dynamics of pedestrians in a socially interacting group. Physical Review E 89, 012811 (2014).
Google Scholar
Corbetta, A., Lee, C.-M., Benzi, R., Muntean, A. & Toschi, F. Fluctuations around mean walking behaviors in diluted pedestrian flows. Physical Review E 95, 032316 (2017).
Google Scholar
Cristiani, E., Piccoli, B. & Tosin, A. Multiscale modeling of pedestrian dynamics Vol. 12 (Springer, 2014).
Google Scholar
Helbing, D. & Molnár, P. Social force model for pedestrian dynamics. Physical Review E 51, 4282–4286 (1995).
Google Scholar
Chen, X., Treiber, M., Kanagaraj, V. & Li, H. Social force models for pedestrian traffic – state of the art. Transport Reviews 38, 625–653 (2018).
Google Scholar
Haghani, M. & Ronchi, E. Revisiting the paper “Simulating dynamical features of escape panic’’: What have we learnt since then?. Collective Dynamics 9, 1–11 (2024).
Google Scholar
Bottinelli, A., Sumpter, D. T. & Silverberg, J. L. Emergent structural mechanisms for high-density collective motion inspired by human crowds. Physical Review Letters 117, 228301 (2016).
Google Scholar
Boltes, M. & Seyfried, A. Collecting pedestrian trajectories. Neurocomputing 100, 127–133 (2013).
Google Scholar
Haghani, M. Empirical methods in pedestrian, crowd and evacuation dynamics: Part ii. field methods and controversial topics. Safety Science 129, 104760 (2020).
Kinateder, M., Wirth, T. D. spsampsps Warren, W. H. Crowd dynamics in virtual reality. In Crowd Dynamics, Volume 1: Theory, Models, and Safety Problems, 15–36 (Birkhäuser, Switzerland, 2018).
Feng, Y., Duives, D., Daamen, W. & Hoogendoorn, S. Data collection methods for studying pedestrian behaviour: A systematic review. Building and Environment 187, 107329 (2021).
Google Scholar
Pouw, C. et al. Benchmarking high-fidelity pedestrian tracking systems for research, real-time monitoring and crowd control. Collective Dynamics 6, 1–22 (2022).
Google Scholar
Pouw, C. A. S., van der Vleuten, G. G. M., Corbetta, A. & Toschi, F. Data-driven physics-based modeling of pedestrian dynamics. Phys. Rev. E 110, 064102 (2024).
Google Scholar
Pouw, C. A., van der Vleuten, G. G., Corbetta, A. & Toschi, F. Data-driven physics-based modeling of pedestrian dynamics – dataset: Pedestrian trajectories at Eindhoven train station https://doi.org/10.5281/zenodo.13784588 (2024).
Google Scholar
Battaglia, P., Pascanu, R., Lai, M., Jimenez Rezende, D. & kavukcuoglu, k. Interaction networks for learning about objects, relations and physics. In Advances in Neural Information Processing Systems (2016).
Sanchez-Gonzalez, A. et al. Learning to simulate complex physics with graph networks. In Proceedings of the 37th International Conference on Machine Learning (2020).
Li, Z. et al. Fourier neural operator for parametric partial differential equations. In International Conference on Learning Representations (2021).
Li, T., Biferale, L., Bonaccorso, F., Scarpolini, M. A. & Buzzicotti, M. Synthetic Lagrangian turbulence by generative diffusion models. Nature Machine Intelligence 6, 393–403 (2024).
Google Scholar
Azizzadenesheli, K. et al. Neural operators for accelerating scientific simulations and design. Nature Reviews Physics 6, 320–328 (2024).
Google Scholar
Alahi, A. et al. Social LSTM: Human trajectory prediction in crowded spaces. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 961–971 (2016).
Mohamed, A., Zhu, D., Vu, W., Elhoseiny, M. & Claudel, C. Social-Implicit: Rethinking trajectory prediction evaluation and the effectiveness of implicit maximum likelihood estimation. In ECCV 2022, 463–479 (2022).
Korbmacher, R. & Tordeux, A. Review of pedestrian trajectory prediction methods: Comparing deep learning and knowledge-based approaches. IEEE Transactions on Intelligent Transportation Systems 23, 24126–24144 (2022).
Google Scholar
Mangalam, K. et al. It is not the journey but the destination: Endpoint conditioned trajectory prediction. In ECCV 2020, 759–776 (2020).
Google Scholar
Gupta, A., Johnson, J., Fei-Fei, L., Savarese, S. & Alahi, A. Social GAN: Socially acceptable trajectories with generative adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018).
Amirian, J., Hayet, J.-B. & Pettre, J. Social Ways: Learning multi-modal distributions of pedestrian trajectories with GANs. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops (2019).
Salzmann, T., Ivanovic, B., Chakravarty, P. & Pavone, M. Trajectron++: Dynamically-feasible trajectory forecasting with heterogeneous data. In ECCV 2020, 683–700 (2020).
Wang, C., Wang, Y., Xu, M. & Crandall, D. J. Stepwise goal-driven networks for trajectory prediction. IEEE Robotics and Automation Letters 7, 2716–2723 (2022).
Google Scholar
Yuan, Y., Weng, X., Ou, Y. & Kitani, K. M. Agentformer: Agent-aware transformers for socio-temporal multi-agent forecasting. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 9813–9823 (2021).
Mangalam, K., An, Y., Girase, H. & Malik, J. From goals, waypoints & paths to long term human trajectory forecasting. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 15233–15242 (2021).
Tang, C., Zhan, W. & Tomizuka, M. Exploring social posterior collapse in variational autoencoder for interaction modeling. In Advances in Neural Information Processing Systems (2021).
Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O. & Dahl, G. E. Neural message passing for quantum chemistry. In Proceedings of the 34th International Conference on Machine Learning, vol. 70 of Proceedings of Machine Learning Research, 1263–1272 (2017).
Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural Computation 9, 1735–1780 (1997).
Google Scholar
Kingma, D. P. & Welling, M. Auto-encoding variational bayes. In International Conference on Learning Representations (2014).
Sohn, K., Lee, H. & Yan, X. Learning structured output representation using deep conditional generative models. In Advances in Neural Information Processing Systems, vol. 28 (2015).
Willems, J., Corbetta, A., Menkovski, V. & Toschi, F. Pedestrian orientation dynamics from high-fidelity measurements. Scientific Reports 10, 11653 (2020).
Google Scholar
Minartz, K., Poels, Y., Koop, S. & Menkovski, V. Equivariant neural simulators for stochastic spatiotemporal dynamics. In Advances in Neural Information Processing Systems 36, 38930–38957 (2023).
Google Scholar
Vaswani, A. et al. Attention is all you need. In Advances in Neural Information Processing Systems, vol. 30 (2017).
Jn, K. et al. Bumblebees land remarkably well in red-blue greenhouse led light conditions. Biology Open 9, bio.046730 (2020).
Vanumu, L. D., Ramachandra Rao, K. & Tiwari, G. Fundamental diagrams of pedestrian flow characteristics: A review. European Transport Research Review 9 (2017).
Porzycki, J., Mycek, M., Lubaś, R. & Was, J. Pedestrian spatial self-organization according to its nearest neighbor position. Transportation Research Procedia 2, 201–206 (2014). The Conference on Pedestrian and Evacuation Dynamics 2014 (PED 2014), 22-24 October 2014, Delft, The Netherlands.
Xiao, Z., Kreis, K. & Vahdat, A. Tackling the generative learning trilemma with denoising diffusion GANs. In International Conference on Learning Representations (2022).
Ballerini, M. et al. Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study. Proceedings of the National Academy of Sciences 105, 1232–1237 (2008).
Google Scholar
Garcia Satorras, V., Hoogeboom, E., Fuchs, F., Posner, I. & Welling, M. E(n) equivariant normalizing flows. In Advances in Neural Information Processing Systems, vol. 34, 4181–4192 (2021).
Kingma, D. P. et al. Improved variational inference with inverse autoregressive flow. In Advances in Neural Information Processing Systems, vol. 29 (2016).
Bowman, S. R. et al. Generating sentences from a continuous space. In Proceedings of the 20th SIGNLL Conference on Computational Natural Language Learning, 10–21 (2016).
Brandstetter, J., Worrall, D. E. & Welling, M. Message passing neural PDE solvers. In International Conference on Learning Representations (2022).