Krinner, G. Impact of lakes and wetlands on boreal climate. J. Geophys. Res. 108, 4520 (2003).
Zhang, G. et al. Response of Tibetan Plateau lakes to climate change: Trends, patterns, and mechanisms. Earth-Sci. Rev. 208, 103269 (2020).
Cheng, J. et al. Regional assessment of the potential risks of rapid lake expansion impacting on the Tibetan human living environment. Environ. Earth Sci. 80, 166 (2021).
Lei, Y. et al. Coherent lake growth on the central Tibetan Plateau since the 1970s: Characterization and attribution. J. Hydrol. 483, 61–67 (2013).
Ma, R. et al. A half-century of changes in China’s lakes: Global warming or human influence?. Geophys. Res. Lett. 37, L24106 (2010).
Song, C., Huang, B. & Ke, L. Inter-annual changes of alpine inland lake water storage on the Tibetan Plateau: Detection and analysis by integrating satellite altimetry and optical imagery. Hydrol. Process. 28, 2411–2418 (2014).
Liao, J., Shen, G. & Li, Y. Lake variations in response to climate change in the Tibetan Plateau in the past 40 years. Int. J. Digit. Earth. 6, 534–549 (2013).
Tong, K., Su, F. & Xu, B. Quantifying the contribution of glacier meltwater in the expansion of the largest lake in Tibet. J. Geophys. Res. -Atmos. 121, 11158–11173 (2016).
van Beek, L. P. H., Wada, Y. & Bierkens, M. F. P. Global monthly water stress: 1. Water balance and water availability. Water Resour. Res. 47, W07517 (2011).
Yang, K. et al. Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review. Glob. Planet. Change 112, 79–91 (2014).
Zhang, D., Huang, J., Guan, X., Chen, B. & Zhang, L. Long-term trends of precipitable water and precipitation over the Tibetan Plateau derived from satellite and surface measurements. J. Quant. Spectrosc. Ra. 122, 64–71 (2013).
Google Scholar
Gao, Y., Li, X., Leung, L. R., Chen, D. & Xu, J. Aridity changes in the Tibetan Plateau in a warming climate. Environ. Res. Lett. 10, 034013 (2015).
You, Q., Min, J. & Kang, S. Rapid warming in the Tibetan Plateau from observations and CMIP5 models in recent decades. Int. J. Climatol. 36, 2660–2670 (2015).
Tong, K., Su, F., Yang, D., Zhang, L. & Hao, Z. Tibetan Plateau precipitation as depicted by gauge observations, reanalyses and satellite retrievals. Int. J. Climatol. 34, 265–285 (2014).
Zhang, Y., Yao, T. & Ma, Y. Climatic changes have led to significant expansion of endorheic lakes in Xizang (Tibet) since 1995. Sci. Cold Arid Reg. 3, 463–467 (2011).
Zhou, J. et al. Exploring the water storage changes in the largest lake (Selin Co) over the Tibetan Plateau during 2003-2012 from a basin-wide hydrological modeling. Water Resour. Res. 51, 8060–8086 (2015).
Guo, Y., Zhang, Y., Ma, N., Xu, J. & Zhang, T. Long-term changes in evaporation over Siling Co Lake on the Tibetan Plateau and its impact on recent rapid lake expansion. Atmos. Res. 216, 141–150 (2019).
Li, B. et al. Improving LSTM hydrological modeling with spatiotemporal deep learning and multi-task learning: a case study of three mountainous areas on the Tibetan Plateau. J. Hydrol. 620, 129401 (2023).
Xu, R., Hu, H., Tian, F., Li, C. & Khan, M. Y. A. Projected climate change impacts on future streamflow of the Yarlung Tsangpo-Brahmaputra River. Glob. Planet. Change 175, 144–159 (2019).
Huang, Q., Long, D., Du, M., Han, Z. & Han, P. Daily continuous river discharge estimation for ungauged basins using a hydrologic model calibrated by satellite altimetry: implications for the SWOT mission. Water Resour. Res. 56, e2020WR027309 (2020).
Goulden, M. L. & Bales, R. C. Mountain runoff vulnerability to increased evapotranspiration with vegetation expansion. P. Natl Acad. Sci. USA 111, 14071–14075 (2014).
Google Scholar
Huang, Q., Zhang, Y., Ma, N. & Post, D. Estimating Vegetation Greening Influences on Runoff Signatures Using a Log-Based Weighted Ensemble Method. Water Resour. Res. 58, e2022WR032492 (2022).
Wang, Y. et al. Vanishing Glaciers at Southeast Tibetan Plateau Have Not Offset the Declining Runoff at Yarlung Zangbo. Geophys. Res. Lett. 48, e2021GL094651 (2021).
Huo, J., Qu, X., Zhu, D., Yuan, Z. & Tang, Y. Impacts of Climate Change on Blue and Green Water Resources in the Middle and Upper Yarlung Zangbo River, China. Atmosphere 12, 1280 (2021).
Lei, Y. et al. Response of inland lake dynamics over the Tibetan Plateau to climate change. Climatic Change 125, 281–290 (2014).
Li, Z. et al. Lake dynamics in Tibetan Plateau during 1990-2020 and exploratory factor analyses using Google Earth Engine. Environ. Sci. Pollut. R. 30, 41609–41622 (2023).
Zhang, G., Xie, H., Kang, S., Yi, D. & Ackley, S. F. Monitoring lake level changes on the Tibetan Plateau using ICESat altimetry data (2003-2009). Remote Sens. Environ. 115, 1733–1742 (2011).
Kuang, X. & Jiao, J. J. Review on climate change on the Tibetan Plateau during the last half century. J. Geophys. Res. -Atmos. 121, 3979–4007 (2016).
Wang, L., Koike, T., Yang, K. & Yeh, P. J. F. Assessment of a distributed biosphere hydrological model against streamflow and MODIS land surface temperature in the upper Tone River Basin. J. Hydrol. 377, 21–34 (2009).
Wang, C. et al. Water Changes and Sources of Siling Co Using Landsat and GRACE Data since 1972. J. Earth Sci. 35, 687–699 (2024).
Li, M., Weng, B., Yan, D., Bi, W. & Wang, H. Variation trends and attribution analysis of lakes in the Qiangtang Plateau, the Endorheic Basin of the Tibetan Plateau. Sci. Total Environ. 837, 155595 (2022).
Google Scholar
Hugonnet, R. et al. Accelerated global glacier mass loss in the early twenty-first century. Nature 592, 726–731 (2021).
Google Scholar
Shu, S. et al. Estimation of snow accumulation over frozen Arctic lakes using repeat ICESat laser altimetry observations-A case study in northern Alaska. Remote Sens. Environ. 216, 529–543 (2021).
Ran, Y., Li, X. & Cheng, G. Climate warming over the past half century has led to thermal degradation of permafrost on the Qinghai-Tibet Plateau. Cryosphere 12, 595–608 (2018).
Wang, T. et al. Unsustainable water supply from thawing permafrost on the Tibetan Plateau in a changing climate. Sci. Bull. 68, 1105–1108 (2023).
Pulliainen, J. et al. Patterns and trends of Northern Hemisphere snow mass from 1980 to 2018. Nature 581, 294–298 (2020).
Google Scholar
Yin, Y., Wu, S., Zhao, D., Zheng, D. & Pan, T. Modeled effects of climate change on actual evapotranspiration in different eco-geographical regions in the Tibetan Plateau. J. Geogr. Sci. 23, 195–207 (2013).
Xu, X., Lu, C., Shi, X. & Gao, S. World water tower: An atmospheric perspective. Geophys. Res. Lett. 35, L20815 (2008).
Immerzeel, W. W., van Beek, L. P. H. & Bierkens, M. F. P. Climate change will affect the Asian water towers. Science 328, 1382–1385 (2010).
Google Scholar
Cuo, L., Zhang, Y., Zhu, F. & Liang, L. Characteristics and changes of streamflow on the Tibetan Plateau: A review. J. Hydrol. -Reg. Stud. 2, 49–68 (2014).
Tang, Y., Huo, J., Zhu, D. & Yuan, Z. Simulation of the Water Storage Capacity of Siling Co Lake on the Tibetan Plateau and Its Hydrological Response to Climate Change. Water 14, 3175 (2022).
Wang, Y. et al. Impacts of frozen ground degradation and vegetation greening on upper Brahmaputra runoff during 1981-2019. Int. J. Climatol. 43, 3768–3781 (2023).
Gao, B. et al. Change in frozen soils and its effect on regional hydrology, Upper Heihe Basin, northeastern Qinghai-Tibetan Plateau. Cryosphere 12, 657–673 (2018).
Wang, T. et al. Pervasive permafrost thaw exacerbates future risk of water shortage across the Tibetan Plateau. Earths Future 11, e2022EF003463 (2023).
Wang, Y. et al. Frozen ground degradation may reduce future runoff in the headwaters of an inland river on the northeastern Tibetan Plateau. J. Hydrol. 564, 1153–1164 (2018).
Lei, Y. et al. Unprecedented lake expansion in 2017-2018 on the Tibetan Plateau: Processes and environmental impacts. J. Hydrol. 619, 129333 (2023).
Perrin, C. et al. Impact of limited streamflow data on the efficiency and the parameters of rainfall-runoff models. Hydrol. Sci. J. 52, 131–151 (2007).
Li, N., Wang, L. & Chen, D. Vegetation greening amplifies shallow soil temperature warming on the Tibetan Plateau. npj Clim. Atmos. Sci. 7, 118 (2024).
Wallner, M. & Haberlandt, U. Non-stationary hydrological model parameters: a framework based on SOM-B. Hydrol. Process. 29, 3145–3161 (2015).
Song, C., Huang, B. & Ke, L. Modeling and analysis of lake water storage changes on the Tibetan Plateau using multi-mission satellite data. Remote Sens. Environ. 135, 25–35 (2013).
Wang, S. et al. Spatial and temporal characteristics of actual evapotranspiration and its influencing factors in Selin Co Basin. Theor. Appl. Climatol. 155, 6195–6211 (2024).
Song, L., Wang, L., Luo, D., Chen, D. & Zhou, J. Assessing hydrothermal changes in the upper Yellow River Basin amidst permafrost degradation. npj Clim. Atmos. Sci. 7, 57 (2024).
Zhang, G. et al. 100 years of lake evolution over the Qinghai-Tibet Plateau. Earth Syst. Sci. Data. 13, 3951–3966 (2021).
Zhang, G. et al. Extensive and drastically different alpine lake changes on Asia’s high plateaus during the past four decades. Geophys. Res. Lett. 44, 252–260 (2017).
Zou, D. et al. A new map of permafrost distribution on the Tibetan Plateau. Cryosphere 11, 2527–2542 (2017).
Sellers, P. J. et al. A Revised Land Surface Parameterization (SiB2) for Atmospheric GCMS. Part I: Model Formulation. J. Clim. 9, 676–705 (1996).
Liang, S. et al. A long-term Global LAnd Surface Satellite (GLASS) data-set for environmental studies. Int. J. Digit. Earth. 6, 5–33 (2013).
He, J. et al. The first high-resolution meteorological forcing dataset for land process studies over China. Sci. Data. 7,(2020).
Jiang, Y. et al. TPHiPr: a long-term (1979-2020) high-accuracy precipitation dataset (1/30°, daily) for the Third Pole region based on high-resolution atmospheric modeling and dense observations. Earth Syst. Sci. Data. 15, 621–638 (2023).
Yang, D., Herath, S. & Musiake, K. Comparison of different distributed hydrological models for characterization of catchment spatial variability. Hydrol. Process. 14, 403–416 (2000).
Li, Q., Sun, S. & Dai, Q. The numerical scheme development of a simplified frozen soil model. Adv. Atmos. Sci. 26, 940–950 (2009).
Shrestha, M., Wang, L., Koike, T., Xue, Y. & Hirabayashi, Y. Improving the snow physics of WEB-DHM and its point evaluation at the SnowMIP sites. Hydrol. Earth Syst. Sci. 14, 2577–2594 (2010).
Wang, L. et al. Development of a land surface model with coupled snow and frozen soil physics. Water Resour. Res. 53, 5085–5103 (2017).
Wang, Y. et al. Temporal and spatial changes in hydrological wet extremes of the largest river basin on the Tibetan Plateau. Environ. Res. Lett. 18, 104006 (2023).
Chai, C. et al. Future snow changes and their impact on the upstream runoff in Salween. Hydrol. Earth Syst. Sc. 26, 4657–4683 (2022).
Liu, H. et al. Energy-balance modeling of heterogeneous glacio-hydrological regimes at upper Indus. J. Hydrol. -Reg. Stud. 49, 101515 (2023).
Qi, J. et al. Coupled snow and frozen ground physics improves cold region hydrological simulations: an evaluation at the upper Yangtze River basin (Tibetan Plateau). J. Geophys. Res. -Atmos. 124, 12985–13004 (2019).
Zhong, X. et al. Precipitation dominates long-term water storage changes in Nam Co Lake (Tibetan Plateau) accompanied by intensified cryosphere melts revealed by a basin-wide hydrological modelling. Remote Sens. 12, 1926 (2020).