Wasiak, T. & Janas, D. Nanowires as a versatile catalytic platform for facilitating chemical transformations. J. Alloys Compd. 892, 162158. https://doi.org/10.1016/j.jallcom.2021.162158 (2022).
Google Scholar
Fihri, A., Bouhrara, M., Nekoueishahraki, B., Basset, J.-M. & Polshettiwar, V. Nanocatalysts for Suzuki cross-coupling reactions. Chem. Soc. Rev. 40(10), 5181–5203. https://doi.org/10.1016/j.jallcom.2021.162158 (2011).
Google Scholar
Primo, A. & Garcıa, H. Supported gold nanoparticles as heterogeneous catalysts for CC coupling reactions. Gold Catal. Prep., Charact., Appl. 389, 9780429083860 (2016).
Li, G. & Jin, R. Catalysis by gold nanoparticles: Carbon-carbon coupling reaction. Nanotechnol. Rev. 2(5), 529–545 (2013).
Google Scholar
Sankar, M. et al. Role of the support in the gold-containing nanoparticles as heterogenous catalysts. Chem. Rev. 120(8), 3890–3938. https://doi.org/10.1021/acs.chemrev.9b00662 (2020).
Google Scholar
Liu, K., Li, N., Ning, Y., Zhu, C. & Xie, J. Gold-catalyzed oxidative biaryl cross-coupling of organometallics. Chem 5(10), 2718–2730. https://doi.org/10.1016/j.chempr.2019.07.023 (2019).
Google Scholar
Ambegave, S. B. & Patil, N. T. Gold-catalyzed cross-coupling and 1, 2-difunctionalization reactions: A personal account. Synlett 34(07), 698–708. https://doi.org/10.1055/a-1893-7653 (2023).
Google Scholar
Chen, G. & Xu, B. Gold catalyzed C-O cross coupling reactions of aryl iodides with silver carboxylates. Org. Lett. 25(34), 6334–6339. https://doi.org/10.1021/acs.orglett.3c02254 (2023).
Google Scholar
Garcia, P., Malacria, M., Aubert, C., Gandon, V. & Fensterbank, L. Gold-catalyzed cross-couplings: New opportunities for C-C bond formation. ChemCatChem 2(5), 493–497. https://doi.org/10.1002/cctc.200900319 (2010).
Google Scholar
Li, X. et al. Unveiling the effects of linker substitution in Suzuki coupling with palladium nanoparticles in metal-organic frameworks. Catal. Lett. 148, 940–945. https://doi.org/10.1007/s10562-017-2289-9 (2018).
Google Scholar
Yuan, B., Pan, Y., Li, Y., Yin, B. & Jiang, H. A highly active heterogeneous palladium catalyst for the Suzuki-Miyaura and ullmann coupling reactions of aryl chlorides in aqueous media. Angew. Chem. Int. Ed. 49(24), 4054–4058. https://doi.org/10.1002/anie.201000576 (2010).
Google Scholar
Widegren, J. A. & Finke, R. G. A review of the problem of distinguishing true homogeneous catalysis from soluble or other metal-particle heterogeneous catalysis under reducing conditions. J. Mol. Catal. A Chem. 198(1–2), 317–341. https://doi.org/10.1016/S1381-1169(02)00728-8 (2003).
Google Scholar
Chouhan, A. S. & Sarma, A. K. Modern heterogeneous catalysts for biodiesel production: A comprehensive review. Renew. Sust. Energ. Rev. 15(9), 4378–4399. https://doi.org/10.1016/j.rser.2011.07.112 (2011).
Google Scholar
De Lima, A. L., Ronconi, C. M. & Mota, C. J. Heterogeneous basic catalysts for biodiesel production. Catal. Sci. Technol. 6(9), 2877–2891. https://doi.org/10.1039/C5CY01989C (2016).
Google Scholar
Di Serio, M. et al. From homogeneous to heterogeneous catalysts in biodiesel production. Ind. Eng. Chem. Res. 46(20), 6379–6384. https://doi.org/10.1021/ie070663q (2007).
Google Scholar
Chaturvedi, S., Dave, P. N. & Shah, N. K. Applications of nano-catalyst in new era. J. Saudi Chem. Soc. 16(3), 307–325. https://doi.org/10.1016/j.jscs.2011.01.015 (2012).
Google Scholar
Baskar, G. & Aiswarya, R. Trends in catalytic production of biodiesel from various feedstocks. Renew. Sust. Energ. Rev. 57, 496–504. https://doi.org/10.1016/j.rser.2015.12.101 (2016).
Google Scholar
Wang, W., Wang, S., Ma, X. & Gong, J. Recent advances in catalytic hydrogenation of carbon dioxide. Chem. Soc. Rev. 40(7), 3703–3727. https://doi.org/10.1039/C1CS15008A (2011).
Google Scholar
Anastas, P. T., Kirchhoff, M. M. & Williamson, T. C. Catalysis as a foundational pillar of green chemistry. Appl. Catal. A Gen. 221(1–2), 3–13. https://doi.org/10.1016/S0926-860X(01)00793-1 (2001).
Google Scholar
Council, N. R., Engineering, D. O. & Sciences, P. National Research Council, Division on Engineering and Physical Sciences, Commission on Physical Sciences, Mathematics, and Applications, Panel on New Directions in Catalytic Science and Technology, Catalysis Looks to the Future. 0309045843 (National Academies Press, 1992).
Rehman, A., Noor, T., Hussain, A., Iqbal, N. & Jahan, Z. Role of catalysis in biofuels production process–a review. ChemBioEng. Rev. 8(5), 417–438. https://doi.org/10.1002/cben.202000040 (2021).
Google Scholar
Gawande, M. B., Zboril, R., Malgras, V. & Yamauchi, Y. Integrated nanocatalysts: A unique class of heterogeneous catalysts. J. Mater. Chem. A. 3(16), 8241–8245. https://doi.org/10.1039/C5TA00119F (2015).
Google Scholar
Xu, L., Wu, X.-C. & Zhu, J.-J. Green preparation and catalytic application of Pd nanoparticles. Nanotechnology 19(30), 305603. https://doi.org/10.1088/0957-4484/19/30/305603 (2008).
Google Scholar
Lin, C.-C. et al. Zr-MOF/polyaniline composite films with exceptional seebeck coefficient for thermoelectric material applications. ACS Appl. Mater. Interfaces 11(3), 3400–3406. https://doi.org/10.1021/acsami.8b17308 (2018).
Google Scholar
Astruc, D., Lu, F. & Aranzaes, J. R. Nanoparticles as recyclable catalysts: The Frontier between homogeneous and heterogeneous catalysis. Angew. Chem. Inter. Ed. 44(48), 7852–7872. https://doi.org/10.1002/anie.200500766 (2005).
Google Scholar
Liu, L. & Corma, A. Metal catalysts for heterogeneous catalysis: From single atoms to nanoclusters and nanoparticles. Chem. Rev. 118(10), 4981–5079. https://doi.org/10.1021/acs.chemrev.7b00776 (2018).
Google Scholar
Wang, S., Wang, Z. & Zha, Z. Metal nanoparticles or metal oxidenanoparticles, an efficient and promising family of novel heterogeneous catalysts in organic synthesis. Dalton Trans. 43, 9363–9373. https://doi.org/10.1039/B913539A (2009).
Google Scholar
Pan, Y. et al. Size-dependent cytotoxicity of gold nanoparticles. Small 3(11), 1941–1949. https://doi.org/10.1002/smll.200700378 (2007).
Google Scholar
Mohammadi, L. et al. Gold nanoparticle decorated post-synthesis modified UiO-66-NH2 for A3-coupling preparation of propargyl amines. Sci. Rep. 13(1), 9051. https://doi.org/10.1038/s41598-023-35848-4 (2023).
Google Scholar
Liu, Y., Wang, J., Li, T., Zhao, Z. & Pang, W. Base-free Pd-MOF catalyzed the Suzuki-Miyaura cross-coupling reaction of arenediazonium tetrafluoroborate salts with arylboronic acids. Tetrahedron 75(40), 130540. https://doi.org/10.1016/j.tet.2019.130540 (2019).
Google Scholar
Gole, B., Sanyal, U., Banerjee, R. & Mukherjee, P. S. High loading of Pd nanoparticles by interior functionalization of MOFs for heterogeneous catalysis. Inorg. Chem. 55, 2345–2354. https://doi.org/10.1021/acs.inorgchem.5b02739 (2016).
Google Scholar
i Xamena, F. X., Abad, A., Corma, A. & Garcia, H. MOFs as catalysts: Activity, reusability and shape-selectivity of a Pd-containing MOF. J. Catal. 250(2), 294–298. https://doi.org/10.1016/j.jcat.2007.06.004 (2007).
Google Scholar
Chen, H. & Li, Y. One-pot synthesis of Pd@MOF composites without the addition of stabilizing agents. Chem. Commun. 50(94), 14752–14755. https://doi.org/10.1039/C4CC06568A (2014).
Google Scholar
Mohammadi, L. & Vaezi, M. R. Palladium nanoparticle-decorated porous metal–organic-framework (Zr)@guanidine: Novel efficient catalyst in cross-coupling (Suzuki, Heck, and Sonogashira) reactions and carbonylative Sonogashira under mild conditions. ACS Omega 8(18), 16395–16410. https://doi.org/10.1021/acsomega.3c01179 (2023).
Google Scholar
Mohammadi, L., Hosseinifard, M. & Vaezi, M. R. Stabilization of palladium-nanoparticle-decorated postsynthesis-modified Zr-UiO-66 MOF as a reusable heterogeneous catalyst in C-C coupling reaction. ACS Omega 8(9), 8505–8518. https://doi.org/10.1021/acsomega.2c07661 (2023).
Google Scholar
Kitagawa, S. Metal-organic frameworks (MOFs). Chem. Soc. Rev. 43(16), 5415–5418. https://doi.org/10.1039/C4CS90059F (2014).
Google Scholar
Furukawa, H., Cordova, K. E., O’Keeffe, M. & Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 341(6149), 1230444. https://doi.org/10.1126/science.1230444 (2013).
Google Scholar
James, S. L. Metal-organic frameworks. Chem. Soc. Rev. 32(5), 276–288. https://doi.org/10.1039/B200393G (2003).
Google Scholar
Zhou, H.-C., Long, J. R. & Yaghi, O. M. Introduction to metal-organic frameworks. Chem. Rev. 112, 673–674. https://doi.org/10.1021/cr300014x (2012).
Google Scholar
MacGillivray, L. R. Metal-Organic Frameworks: Design and Application (Wiley, 2010).
Google Scholar
Li, B., Wen, H. M., Cui, Y., Zhou, W. & Chen, B. Emerging multifunctional metal-organic framework materials. Adv. Mater. 28, 8819–8860. https://doi.org/10.1002/adma.01601133 (2016).
Google Scholar
Berijani, K. & Morsali, A. The role of metal–organic porous frameworks in dual catalysis. Inorg. Chem. Front. 8(15), 3618–3658. https://doi.org/10.1039/D1QI00394A (2021).
Google Scholar
Huang, X. et al. Research progress of metal organic frameworks and their derivatives for adsorption of anions in water: A review. Environ. Res. 204, 112381 (2022).
Google Scholar
Daliran, S., Oveisi, A. R., Peng, Y., López-Magano, A. & Khajeh, M. Metal–organic framework (MOF), covalent-organic framework (COF)-, and porous-organic polymers (POP)-catalyzed selective C-H bond activation and functionalization reactions. Chem. Soc. Rev. 51(18), 7810–7882. https://doi.org/10.1039/D1CS00976A (2022).
Google Scholar
Mohmeyer, A. Synthesis, characterization and postsynthetic modification of a novel two-dimensional Zr-based metal-organic framework. https://doi.org/10.15488/9176 (2019).
Ahmadijokani, F. et al. UiO-66 metal–organic frameworks in water treatment: A critical review. Prog. Mater. Sci. 125, 100904. https://doi.org/10.1016/j.pmatsci.2021.100904 (2022).
Google Scholar
Dhakshinamoorthy, A., Santiago-Portillo, A., Asiri, A. M. & Garcia, H. Engineering UiO-66 metal organic framework for heterogeneous catalysis. ChemCatChem 11(3), 899–923. https://doi.org/10.1002/cctc.201801452 (2019).
Google Scholar
Yang, L.-M., Ganz, E., Svelle, S. & Tilset, M. Computational exploration of newly synthesized zirconium metal–organic frameworks UiO-66,-67,-68 and analogues. J. Mater. Chem. C. 2(34), 7111–7125. https://doi.org/10.1039/C4TC00902A (2014).
Google Scholar
Vahabi, A. H., Norouzi, F., Sheibani, E. & Rahimi-Nasrabadi, M. Functionalized Zr-UiO-67 metal-organic frameworks: Structural landscape and application. Coord. Chem. Rev. 445, 214050. https://doi.org/10.1016/j.ccr.2021.214050 (2021).
Google Scholar
Xu, R., Kang, Y., Zhang, W., Zhang, X. & Pan, B. Oriented UiO-67 metal-organic framework membrane with fast and selective lithium-ion transport. Angew. Chem. Int. Ed. 61(3), e202115443. https://doi.org/10.1002/anie.202115443 (2022).
Google Scholar
Ye, X. & Liu, D. Metal-organic framework UiO-68 and its derivatives with sufficiently good properties and performance show promising prospects in potential industrial applications. Cryst. Growth Des. 21(8), 4780–4804. https://doi.org/10.1021/acs.cgd.1c00460 (2021).
Google Scholar
Li, M., Yuan, D., Wu, B. & Hong, M. Engineering UiO-68-typed homochiral metal-organic frameworks for the enantiomeric separation of Fmoc-AAs and mechanism study. ACS Appl. Mater. Interfaces. 15(18), 22241–22250. https://doi.org/10.1021/acsami.3c01735 (2023).
Google Scholar
Li, M., Zhang, L., Wu, B. & Hong, M. High-enantioselectivity adsorption separation of racemic mandelic acid and methyl mandelate by robust chiral UiO-68-Type Zr-MOFs. Inorg. Chem. 63(1), 381–389. https://doi.org/10.1021/acs.inorgchem.3c03277 (2023).
Google Scholar
Lawrence, M. C. & Katz, M. J. Analysis of the water adsorption isotherms in UiO-based metal-organic frameworks. J. Phys. Chem. C. 126(2), 1107–1114. https://doi.org/10.1021/acs.jpcc.1c05190 (2021).
Google Scholar
Zou, D. & Liu, D. Understanding the modifications and applications of highly stable porous frameworks via UiO-66. Mater. Today Chem. 12, 139–165. https://doi.org/10.1016/j.mtchem.2018.12.004 (2019).
Google Scholar
Winarta, J. et al. A decade of UiO-66 research: A historic review of dynamic structure, synthesis mechanisms, and characterization techniques of an archetypal metal-organic framework. Cryst. Growth Des. 20(2), 1347–1362. https://doi.org/10.1021/acs.cgd.9b00955 (2019).
Google Scholar
Katz, M., Brown, Z., Colón, Y. & Siu, P. K. A facile synthesis of UiO-66, UiO-67 and their derivatives. Chem. Commun. 49, 9449–9451. https://doi.org/10.1039/C3CC46105J (2013).
Google Scholar
Kandiah, M. et al. Synthesis and stability of tagged UiO-66 Zr-MOFs. Chem. Mater. 22(24), 6632–6640. https://doi.org/10.1021/cm102601v (2010).
Google Scholar
Trickett, C. A. et al. Definitive molecular level characterization of defects in UiO-66 crystals. Angew. Chem. Int. Ed. 54(38), 11162–11167. https://doi.org/10.1002/anie.201505461 (2015).
Google Scholar
Li, Y.-H., Wang, C.-C., Yi, X.-H. & Chu, H.-Y. UiO-66(Zr)-based functional materials for water purification: An updated review. Environ. Funct. Mater. 2, 93–132. https://doi.org/10.1016/j.efmat.2024.02.001 (2023).
Google Scholar
Luu, C. L., Van Nguyen, T. T., Nguyen, T. & Hoang, T. C. Synthesis, characterization and adsorption ability of UiO-66-NH2. Adv. Nat. Sci. Nanosci. Nanotechnol. 6(2), 025004. https://doi.org/10.1088/2043-6262/6/2/025004 (2015).
Google Scholar
Hajek, J. et al. Mechanistic studies of aldol condensations in UiO-66 and UiO-66-NH2 metal organic frameworks. J. Catal. 331, 1–12. https://doi.org/10.1016/j.jcat.2015.08.015 (2015).
Google Scholar
Vermoortele, F. et al. Synthesis modulation as a tool to increase the catalytic activity of metal-organic frameworks: The unique case of UiO-66(Zr). J. Am. Chem. Soc. 135(31), 11465–11468. https://doi.org/10.1021/ja405078u (2013).
Google Scholar
Hua, W., Zhang, T., Wang, M., Zhu, Y. & Wang, X. Hierarchically structural PAN/UiO-66-(COOH)2 nanofibrous membranes for effective recovery of Terbium(III) and Europium(III) ions and their photoluminescence performances. Chem. Eng. J. 370, 729–741. https://doi.org/10.1016/j.cej.2019.03.255 (2019).
Google Scholar
Wang, K., Wu, J., Zhu, M., Zheng, Y.-Z. & Tao, X. Highly effective pH-universal removal of tetracycline hydrochloride antibiotics by UiO-66-(COOH)2/GO metal–organic framework composites. J. Solid State Chem. 284, 121200. https://doi.org/10.1016/j.jssc.2020.121200 (2020).
Google Scholar
Feng, L., Liu, J., Abu-Hamdeh, N. H., Bezzina, S. & Malekshah, R. E. Molecular dynamics and quantum simulation of different cationic dyes removal from contaminated water using UiO-66 (Zr)-(COOH)2 metal–organic framework. J. Mol. Liq. 349, 118085. https://doi.org/10.1016/j.molliq.2021.118085 (2022).
Google Scholar
Dinh, H. T., Tran, N. T. & Trinh, D. X. Investigation into the adsorption of methylene blue and methyl orange by UiO-66-NO2 nanoparticles. J. Anal. Methods Chem. 1, 5512174. https://doi.org/10.1155/2021/5512174(2021) (2021).
Google Scholar
Zeng, S. et al. UiO-66-NO2 as an oxygen “Pump” for enhancing oxygen reduction reaction performance. Chem. Mater. 31(5), 1646–1654. https://doi.org/10.1021/acs.chemmater.8b04934 (2019).
Google Scholar
Rada, Z., Abid, H. R., Sun, H. & Wang, S. Bifunctionalized metal organic frameworks, UiO-66-NO2-N (N = –NH2, –(OH)2, (COOH)2), for enhanced adsorption and selectivity of CO2 and N2. J. Chem. Eng. Data 60(7), 2152–2161. https://doi.org/10.1021/acs.jced.5b00229 (2015).
Google Scholar
Wang, C. et al. Amorphous metal-organic framework UiO-66-NO2 for removal of oxyanion pollutants: Towards improved performance and effective reusability. Sep. Purif. Technol. 295, 121014. https://doi.org/10.1016/j.seppur.2022.121014 (2022).
Google Scholar
Bahar, M. K., Khan, W. U., Helal, A. & Al-Harthi, M. A. Inscriptions of metal organic frame work (MOF) reinforcements in polymeric nanocomposites—state-of-the-art and multifaceted impressions. Polym. Plast. Technol. Mater. 63(1), 38–54. https://doi.org/10.1080/25740881.2024.2441941 (2024).
Google Scholar
Schelling, M., Otal, E., Kim, M. & Hinestroza, J. P. Conformal functionalization of cotton fibers via isoreticular expansion of UiO-66 metal-organic frameworks. Coatings 10(12), 1172. https://doi.org/10.3390/coatings10121172 (2020).
Google Scholar
Jia, X. et al. Highly efficient photocatalytic degradation of tetracycline by modifying UiO-66 via different regulation strategies. ACS Omega 8(30), 27375–27385. https://doi.org/10.1021/acsomega.3c02762 (2023).
Google Scholar
Verma, R. et al. Amine-decorated zirconium based metal organic framework for ultrafast detection of 2,4,6-trinitrophenol in aqueous samples. J. Fluoresc. 33(5), 2085–2098. https://doi.org/10.1007/s10895-023-03216-0 (2023).
Google Scholar
Kung, C.-W. et al. Charge transport in Zirconium-based metal-organic frameworks. Acc. Chem. Res. 53(6), 1187–1195. https://doi.org/10.1021/acs.accounts.0c00106 (2020).
Google Scholar
Gómez-Avilés, A., Solís, R. R., García-Frutos, E. M., Bedia, J. & Belver, C. Novel isoreticular UiO-66-NH2 frameworks by N-cycloalkyl functionalization of the 2-aminoterephtalate linker with enhanced solar photocatalytic degradation of acetaminophen. Chem. Eng. J. 461, 141889. https://doi.org/10.1016/j.cej.2023.141889 (2023).
Google Scholar
Bunge, M. A., Davis, A. B., West, K. N., West, C. W. & Glover, T. G. Synthesis and characterization of UiO-66-NH2 metal-organic framework cotton composite textiles. Ind. Eng. Chem. Res. 57(28), 9151–9161. https://doi.org/10.1021/acs.iecr.8b01010 (2018).
Google Scholar
Szejtli, J. Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 98(5), 1743–1754 (1998).
Google Scholar
Davis, M. E. & Brewster, M. E. Cyclodextrin-based pharmaceutics: Past, present and future. Nat. Rev. Drug Dis. 3(12), 1023–1035. https://doi.org/10.1038/nrd1576 (2004).
Google Scholar
Bender, M. L. & Komiyama, M. Cyclodextrin Chemistry Vol. 6 (Springer Science & Business Media, 2012). https://doi.org/10.1007/978-3-642-66842-5.
Google Scholar
Szejtli, J. Past, present and future of cyclodextrin research. Pure Appl. Chem. 76(10), 1825–1845 (2004).
Google Scholar
Szejtli, J. Cyclodextrin Technology Vol. 1 (Springer Science & Business Media, 1988).
Poulson, B. G. et al. Cyclodextrins: Structural, chemical, and physical properties, and applications. Polysaccharides 3(1), 1–31. https://doi.org/10.3390/polysaccharides3010001 (2022).
Google Scholar
Kurkov, S. V. & Loftsson, T. Cyclodextrins. Int. J. Pharm. 453(1), 167–180. https://doi.org/10.1016/j.ijpharm.2012.06.055 (2013).
Google Scholar
Stella, V. J. & He, Q. Cyclodextrins. Toxicol. Pathol. 36(1), 30–42. https://doi.org/10.1177/0192623307310945 (2008).
Google Scholar
Crini, G. Review: A history of cyclodextrins. Chem. Rev. 114(21), 10940–10975. https://doi.org/10.1021/cr500081p (2014).
Google Scholar
Del Valle, M. E. Cyclodextrins and their uses: A review. Process Biochem. 39(9), 1033–1046. https://doi.org/10.1016/S0032-9592(03)00258-9 (2004).
Google Scholar
Gonzalez Pereira, A. et al. Main applications of cyclodextrins in the food industry as the compounds of choice to form host–guest complexes. Int. J. Mol. Sci. 22(3), 1339. https://doi.org/10.3390/ijms22031339 (2021).
Google Scholar
Fernández, M. A., Silva, O. F., Vico, R. V. & de Rossi, R. H. Complex systems that incorporate cyclodextrins to get materials for some specific applications. Carbohydr. Res. 480, 12–34. https://doi.org/10.1016/j.carres.2019.05.006 (2019).
Google Scholar
Wüpper, S., Lüersen, K., Lüersen, & Cyclodextrins, G. Natural compounds, and plant bioactives—a nutritional perspective. Biomolecules 11(3), 401. https://doi.org/10.3390/biom11030401 (2021).
Google Scholar
Lee, D. T., Zhao, J. C., Oldham, J., Peterson, G. W. & Parsons, G. N. UiO-66-NH2 metal-organic framework (MOF) nucleation on TiO2, ZnO, and Al2O3 atomic layer deposition-treated polymer fibers: Role of metal oxide on MOF growth and catalytic hydrolysis of chemical warfare agent simulants. ACS Appl. Mater. Interfaces 9(51), 44847–44855. https://doi.org/10.1021/acsami.7b15397 (2017).
Google Scholar
Zhang, H., Liu, Z. & Shen, J. Cyclodextrins modified/coated metal-organic frameworks. Materials 13(6), 1273. https://doi.org/10.3390/ma13061273 (2020).
Google Scholar
Maesta Bezerra, F. et al. The role of β-cyclodextrin in the textile industry—review. Molecules 25(16), 3624–3628. https://doi.org/10.3390/molecules25163624 (2020).
Google Scholar
Decock, G., Landy, D., Surpateanu, G. & Fourmentin, S. Study of the retention of aroma components by cyclodextrins by static headspace gas chromatography. J. Incl. Phenom. Macrocycl. Chem. 62(3), 297–302. https://doi.org/10.1007/s10847-008-9471-z (2008).
Google Scholar
Pratt, D. Y., Wilson, L. D., Kozinski, J. A. & Mohart, A. M. Preparation and sorption studies of β-cyclodextrin/epichlorohydrin copolymers. J. Appl. Polym. Sci. 116(5), 2982–2989. https://doi.org/10.1002/app.31824 (2010).
Google Scholar
Hamedi, A., Anceschi, A., Patrucco, A. & Hasanzadeh, M. A γ-cyclodextrin-based metal–organic framework (γ-CD-MOF): A review of recent advances for drug delivery application. J. Drug Target. 30(4), 381–393. https://doi.org/10.1080/1061186X.2021.2012683 (2022).
Google Scholar
He, S. et al. Metal-organic frameworks for advanced drug delivery. Acta Pharm. Sin. B. 11(8), 2362–2395. https://doi.org/10.1016/j.apsb.2021.03.019 (2021).
Google Scholar
Rao, C. R., Kulkarni, G. U., Thomas, P. J. & Edwards, P. P. Metal nanoparticles and their assemblies. Chem. Soc. Rev. 29, 27–35. https://doi.org/10.1039/A904518J (2000).
Google Scholar
Blessy Rebecca, P. N., Durgalakshmi, D. & Ajay Rakkesh, R. Metal-organic frameworks (MOFs) for glucose sensing: Advancing non-invasive detection strategies in diabetes management. Anal. Sens. 5(1), e202300052. https://doi.org/10.1002/anse.202400078 (2025).
Google Scholar
Basak, S. et al. Metal-organic framework as nanocarriers for agricultural applications: A review. Front. Nanotechnol. 6, 1385981. https://doi.org/10.3389/fnano.2024.1385981 (2024).
Google Scholar
Hoyez, G., Rousseau, J., Rousseau, C., Saitzek, S., King, J., Szilágyi, P. Á., Volkringer, C., Loiseau, T., Hapiot, F. & Monflier, E. Cyclodextrins: A new and effective class of co-modulators for aqueous zirconium-MOF syntheses CrystEngComm. 23(14), 2764–2772. https://doi.org/10.1039/D1CE00128K (2021).
Liu, F. & Hu, B. Experimental and DFT study of adsorption-reduction mechanism of Au(III) and Cr(VI) by β-cyclodextrin/polydopamine coated UiO-66-NH2 magnetic composites. Appl. Surf. Sci. 626, 157292. https://doi.org/10.1016/j.apsusc.2023.157292 (2023).
Google Scholar
Lin, S., Gan, N., Cao, Y., Chen, Y. & Jiang, Q. Selective dispersive solid phase extraction-chromatography tandem mass spectrometry based on aptamer-functionalized UiO-66-NH2 for determination of polychlorinated biphenyls. J. Chromatogr. A. 1446, 34–40. https://doi.org/10.1016/j.chroma.2016.04.016 (2016).
Google Scholar
Mohammadi, L. et al. Stabilization of Pd NPs over the surface of β-cyclodextrin incorporated UiO-66-NH2 for the C-C coupling reaction. RSC Adv. 13(25), 17143–17154. https://doi.org/10.1039/D2RA08347G (2023).
Google Scholar
Yao, X., Huang, P. & Nie, Z. Cyclodextrin-based polymer materials: From controlled synthesis to applications. Prog. Polym. Sci. 93, 1–35. https://doi.org/10.1016/j.progpolymsci.2019.03.004 (2019).
Google Scholar
Van De Manakker, F., Vermonden, T., Van Nostrum, C. F. & Hennink, W. E. Cyclodextrin-based polymeric materials: Synthesis, properties, and pharmaceutical/biomedical applications. Biomacromol 10(12), 3157–3175. https://doi.org/10.1021/bm901065f (2009).
Google Scholar
Okasha, A. T. et al. Progress of synthetic cyclodextrins-based materials as effective adsorbents of the common water pollutants: Comprehensive review. J. Environ. Chem. Eng. 11(3), 109824. https://doi.org/10.1016/j.jece.2023.109824 (2023).
Google Scholar
Concheiro, A. & Alvarez-Lorenzo, C. Chemically cross-linked and grafted cyclodextrin hydrogels: From nanostructures to drug-eluting medical devices. Adv. Drug Deliv. Rev. 65(9), 1188–1203. https://doi.org/10.1016/j.addr.2013.04.015 (2013).
Google Scholar
Li, Y., Hong, X. M., Collard, D. M. & El-Sayed, M. A. Suzuki cross-coupling reactions catalyzed by palladium nanoparticles in aqueous solution. Org. Lett. 2, 2385–2388. https://doi.org/10.1021/ol0061687 (2000).
Google Scholar
Zhang, Y., Huang, J. & Ding, Y. Porous Co3O4/CuO hollow polyhedral nanocages derived from metal-organic frameworks with heterojunctions as efficient photocatalytic water oxidation catalysts. Appl. Catal. B Environ. 198, 447–456. https://doi.org/10.1016/j.apcatb.2016.05.078 (2016).
Google Scholar
Fedlheim, D. L. & Foss, C. A. Metal Nanoparticles: Synthesis, Characterization, and Applications (CRC Press, 2001).
Google Scholar
Babu, P. J. & Tirkey, A. Green synthesis of gold nanoparticles and their biomedical and healthcare applications. Nanotechnol. Hum. Health https://doi.org/10.1016/B978-0-323-90750-7.00006-5 (2023).
Google Scholar
Cuenya, B. R. Synthesis and catalytic properties of metal nanoparticles: Size, shape, support, composition, and oxidation state effects. Thin Solid Films 518(12), 3127–3150. https://doi.org/10.1016/j.tsf.2010.01.018 (2010).
Google Scholar
Narayan, N., Meiyazhagan, A. & Vajtai, R. Metal nanoparticles as green catalysts. Materials 12(21), 3602. https://doi.org/10.3390/ma12213602 (2019).
Google Scholar
Reina, A., Dang-Bao, T., Guerrero-Ríos, I. & Gómez, M. Palladium and copper: Advantageous nanocatalysts for multi-step transformations. Nanomaterials 11(8), 1891. https://doi.org/10.3390/nano11081891 (2021).
Google Scholar
de Barros, S. D., Senra, J. D., Lachter, E. R. & Malta, L. F. Metal-catalyzed cross-coupling reactions with supported nanoparticles: Recent developments and future directions. Catal. Rev. 58, 439–496. https://doi.org/10.1080/01614940.2016.1202640 (2016).
Google Scholar
Mohammadi, L. et al. Stabilization of copper nanoparticles onto the double Schiff-base-functionalized ZSM-5 for A3 coupling reaction catalysis aimed under mild conditions. RSC Adv. 13(7), 4843–4858. https://doi.org/10.1039/D2RA07700K (2023).
Google Scholar
Abánades Lázaro, L., Wells, C. J. & Forgan, R. S. Multivariate modulation of the Zr MOF UiO-66 for defect-controlled combination anticancer drug delivery. Angew. Chem. 132(13), 5249–5255. https://doi.org/10.1002/ange.201915848 (2020).
Google Scholar
Ferahtia, A., Halilat, M. T., Mimeche, F. & Bensaci, E. Surface water quality assessment in semi-arid region (El Hodna watershed, Algeria) based on water quality index (WQI). Stud. Univ. Babes-Bolyai, Chem. 66(1), 127–142. https://doi.org/10.24193/subbchem.2021.1.10 (2021).
Google Scholar
Krishnamurthy, S., Esterle, A., Sharma, N. C. & Sahi, S. V. Yucca-derived synthesis of gold nanomaterial and their catalytic potential. Nanoscale Res. Lett. 9, 1–9. https://doi.org/10.1186/1556-276X-9-627 (2014).
Google Scholar
Sun, J., Fu, Y., He, G., Sun, X. & Wang, X. Green Suzuki-Miyaura coupling reaction catalyzed by palladium nanoparticles supported on graphitic carbon nitride. Appl. Catal. B Environ. 165, 661–667. https://doi.org/10.1016/j.apcatb.2014.10.072 (2015).
Google Scholar
Raheem, A. A., Thangasamy, P., Sathish, M. & Praveen, C. Supercritical water assisted preparation of recyclable gold nanoparticles and their catalytic utility in cross-coupling reactions under sustainable conditions. Nanoscale Adv. 1(8), 3177–3191. https://doi.org/10.1039/C9NA00240E (2019).
Google Scholar
Shaw, B. L. Highly active, stable, catalysts for the Heck reaction; further suggestions on the mechanism. Chem. Commun. 13, 1361–1362. https://doi.org/10.1039/A802642D (1998).
Google Scholar
Liao, Y. et al. Magnetite nanoparticle-supported coordination polymer nanofibers: Synthesis and catalytic application in Suzuki-Miyaura coupling. ACS Appl. Mater. Interfaces. 2(8), 2333–2338. https://doi.org/10.1021/am100354b (2010).
Google Scholar
Borhade, S. R. & Waghmode, S. B. Studies on Pd/NiFe2O4 catalyzed ligand-free Suzuki reaction in aqueous phase: Synthesis of biaryls, terphenyls and polyaryls. Beilstein J. Org. Chem. 7(1), 310–319 (2011).
Google Scholar
Elazab, H. A., Siamaki, A. R., Moussa, S., Gupton, B. F. & El-Shall, M. S. Highly efficient and magnetically recyclable graphene-supported Pd/Fe3O4 nanoparticle catalysts for Suzuki and Heck cross-coupling reactions. Appl. Catal. A Gen. 491, 58–69. https://doi.org/10.1016/j.apcata.2014.11.033 (2015).
Google Scholar
Zeltner, M., Schätz, A. & Hefti, M. L. Magnetothermally responsive C/Co@PNIPAM-nanoparticles enable preparation of self-separating phase-switching palladiumcatalysts. J. Mater. Chem. 21(9), 2991–2996. https://doi.org/10.1039/C0JM03338C (2011).
Google Scholar
Faisal, S. ROMP-Derived Alkylating Reagents and Scavengers: Application in Library Development and Sequestration (University of Kansas, 2016).
Li, R. et al. Pd–Fe3O4@C hybrid nanoparticles: Preparation, characterization, and their high catalytic activity toward Suzuki coupling reactions. J. Mater. Chem. 22(42), 22750–22755. https://doi.org/10.1039/C2JM35252D (2012).
Google Scholar
Amali, A. J. & Rana, R. K. Stabilization of Pd(0) on surface functionalised Fe3O4nanoparticles: Magnetically recoverable and stable recyclable catalyst for hydrogenation and Suzuki-Miyaura reactions. Green Chem. 11(11), 1781–1786. https://doi.org/10.1039/B916261P (2009).
Google Scholar
Yang, J. et al. Palladium supported on a magnetic microgel: An efficient and recyclable catalyst for Suzuki and Heck reactions in water. Green Chem. 15(12), 3429–3437. https://doi.org/10.1039/C3GC40941D (2013).
Google Scholar
Tanhaei, M., Mahjoub, A. & Nejat, R. Three-dimensional graphene-magnetic palladium nanohybrid: A highly efficient and reusable catalyst for promoting organic reactions. Catal. Lett. 148(6), 1549–1561. https://doi.org/10.1007/s10562-018-2347-y (2018).
Google Scholar
Kwon, T. H., Cho, K. Y., Baek, K.-Y., Yoon, H. G. & Kim, B. M. Recyclable palladium–graphene nanocomposite catalysts containing ionic polymers: Efficient Suzuki coupling reactions. RSC Adv. 7(19), 11684–11690. https://doi.org/10.1039/C6RA26998B (2017).
Google Scholar
Park, J. H. et al. Recyclable N-heterocyclic carbene/palladium catalyst on graphene oxide for the aqueous-phase Suzuki reaction. Tetrahedron Lett. 55(23), 3426–3430. https://doi.org/10.1016/j.tetlet.2014.04.078 (2014).
Google Scholar
Wang, Z. J., Ghasimi, S., Landfester, K. & Zhang, K. A. Photocatalytic Suzuki coupling reaction using conjugated microporous polymer with immobilized palladium nanoparticles under visible light. Chem. Mater. 27(6), 1921–1924. https://doi.org/10.1021/acs.chemmater.5b00516 (2015).
Google Scholar
Dong, D. et al. Postsynthetic modification of single Pd sites into uncoordinated polypyridine groups of a MOF as the highly efficient catalyst for Heck and Suzuki reactions. New J. Chem. 42(11), 9317–9323. https://doi.org/10.1039/C8NJ00518D (2018).
Google Scholar
Singh, R. et al. Solid-supported materials-based synthesis of 2-substituted benzothiazoles: Recent developments and Sanguine future. ChemistrySelect 6(25), 6388–6449. https://doi.org/10.1002/slct.202101368 (2021).
Google Scholar
Bahrami, K. & Kamrani, S. N. Synthesis, characterization and application of graphene palladium porphyrin as a nanocatalyst for the coupling reactions such as: Suzuki-Miyaura and Mizoroki-Heck. Appl. Organomet. Chem. 32(2), e4102. https://doi.org/10.1002/aoc.4102 (2018).
Google Scholar