Gamble, F. R. et al. Intercalation complexes of Lewis bases and layered sulfides: a large class of new superconductors. Science 174, 493–497 (1971).
Google Scholar
Yu, Y. et al. Enhancing multifunctionalities of transition-metal dichalcogenide monolayers via cation intercalation. ACS Nano 11, 9390 (2017).
Google Scholar
Wang, Z. et al. Intercalated phases of transition metal dichalcogenides. Smart Mat. 1, e1013 (2020).
Rajapakse, M. et al. Intercalation as a versatile tool for fabrication, property tuning, and phase transitions in 2D materials. npj 2D Mater. Appl. 5, 30 (2021).
Google Scholar
Tezze, D. et al. Tuning the magnetic properties of NiPS3 through organic-ion intercalation. Nanoscale 14, 1165–1173 (2022).
Google Scholar
He, Q. et al. Direct synthesis of controllable ultrathin heteroatoms-intercalated 2D layered materials. Nat. Commun. 15, 6320 (2024).
Google Scholar
Snow, C. S. et al. Quantum melting of the charge-density-wave in 1T-TiSe2. Phys. Rev. Lett. 91, 136402 (2003).
Google Scholar
Morosan, E. et al. Superconductivity in CuxTiSe2. Nat. Phys. 2, 544–550 (2006).
Google Scholar
Barath, H. et al. Quantum and classical mode softening near the charge density wave—superconductor transition in CuxTiSe2. Phys. Rev. Lett. 100, 106402 (2008).
Google Scholar
Kusmartseva, A. F. et al. Pressure induced superconductivity in pristine 1T-TiSe2. Phys. Rev. Lett. 103, 236401 (2009).
Google Scholar
Yan, S. et al. Influence of domain walls in the incommensurate charge density wave state of Cu intercalated 1T-TiSe2. Phys. Rev. Lett. 118, 106405 (2017).
Google Scholar
Togawa, Y. et al. Anomalous temperature behavior of the chiral spin helix in CrNb3S6 thin lamellae. Phys. Rev. Lett. 122, 017204 (2019).
Google Scholar
Aoki, R. et al. Anomalous nonreciprocal electrical transport on chiral magnetic order. Phys. Rev. Lett. 122, 057206 (2019).
Google Scholar
Tang, S. et al. Tuning magnetic soliton phase via dimensional confinement in exfoliated 2D Cr1/3NbS2 thin flakes. Nano Lett. 18, 4023–4028 (2018).
Google Scholar
Clements, E. M. et al. Magnetic field dependence of nonlinear magnetic response and tricritical point in the monoaxial chiral helimagnet Cr1/3NbS2. Phys. Rev. B 97, 214438 (2018).
Google Scholar
Wang, L. et al. Controlling the topological sector of magnetic solitons in exfoliated Cr1/3NbS2 crystals. Phys. Rev. Lett. 118, 257203 (2017).
Google Scholar
Ghimire, N. J. et al. Magnetic phase transition in single crystals of the chiral helimagnet Cr1/3NbS2. Phys. Rev. B 87, 104403 (2013).
Google Scholar
Togawa, Y. et al. Chiral magnetic soliton lattice on a chiral helimagnet. Phys. Rev. Lett. 108, 107202 (2012).
Google Scholar
Tenasini, G. et al. Giant anomalous Hall effect in quasi-two-dimensional layered antiferromagnet Co1/3NbS2. Phys. Rev. Res. 2, 023051 (2000).
Google Scholar
Sirica, N. et al. The nature of ferromagnetism in the chiral helimagnet Cr1/3NbS2. Commun. Phys. 3, 65 (2020).
Google Scholar
Liu, H. et al. Elastically induced magnetization at ultrafast time scales in a chiral helimagnet. Phys. Rev. B 106, 035103 (2022).
Google Scholar
Karna, S. K. et al. Annihilation and control of chiral domain walls with magnetic field. Nano Lett. 21, 1205–1212 (2021).
Google Scholar
Park, P. et al. Tetrahedral triple-Q magnetic ordering and large spontaneous Hall conductivity in the metallic triangular antiferromagnet Co1/3TaS2. Nat. Commun. 14, 8346 (2023).
Google Scholar
Park, P. et al. Composition dependence of bulk properties in the Co-intercalated transition metal dichalcogenide Co1/3TaS2. Phys. Rev. B 109, L060403 (2024).
Google Scholar
Radovsky, G. et al. Nanotubes from chalcogenide misfit compounds: Sn-S and Nb-Pb-S. Acc. Chem. Res. 47, 406–416 (2014).
Google Scholar
Sreedhara, M. B. et al. Nanotubes from the misfit layered compound (SmS)1.19TaS2: atomic structure, charge transfer, and electrical properties. Chem. Mater. 34, 1838–1853 (2022).
Google Scholar
Nawaz Tahir, M. et al. Synthesis and functionalization of chalcogenide nanotubes. Phys. Stat. Sol. (b) 247, 2338–2363 (2010).
Google Scholar
Morosan, E. et al. Sharp switching of the magnetization in Fe1/4TaS2. Phys. Rev. B 75, 104401 (2007).
Google Scholar
Horibe, Y. et al. Color theorems, chiral domain topology, and magnetic properties of FexTaS2. J. Am. Chem. Soc. 136, 8368–8373 (2014).
Google Scholar
Mito, M. et al. Investigation of structural changes in chiral magnet Cr1/3NbS2 under application of pressure. J. Appl. Phys. 117, 183904 (2015).
Google Scholar
Liu, Y. et al. Electrical and thermal transport in van der Waals magnets 2H-MTaS2 (M = Mn, Co). Phys. Rev. Res. 4, 013048 (2022).
Google Scholar
Du, K. et al. Strain-control of cycloidal spin order in a metallic van der Waals magnet. Adv. Mater. 35, 2303750 (2023).
Google Scholar
Xie, L. S. et al. Structure and magnetism of iron- and chromium-intercalated niobium and tantalum disulfides. J. Am. Chem. Soc. 144, 9525–9542 (2022).
Google Scholar
Husremovic, S. et al. Hard ferromagnetism down to the thinnest limit of iron-intercalated tantalum disulfide. J. Am. Chem. Soc. 144, 12167–12176 (2022).
Google Scholar
An, Y. et al. Bulk properties of the chiral metallic triangular antiferromagnets Ni1/3NbS2 and Ni1/3TaS2. Phys. Rev. B 108, 054418 (2023).
Google Scholar
Du, K. et al. Topological spin-structure couplings in layered chiralmagnet Cr1/3TaS22: the discovery of spiral magnetic superstructure. Proc. Natl Acad. Sci. USA 118, e2023337118 (2021).
Google Scholar
Hu, W. Z. et al. Optical study of the charge-density-wave mechanism in 2H-TaS2 and NaxTaS2. Phys. Rev. B 76, 045103 (2007).
Google Scholar
Mankovsky, S. et al. Electronic, magnetic, and transport properties of Fe-intercalated 2H-TaS2 studied by means of the KKR-CPA method. Phys. Rev. B 92, 144413 (2015).
Google Scholar
Fan, S. et al. Electronic chirality in the metallic ferromagnet Fe1/3TaS2. Phys. Rev. B 96, 205119 (2017).
Google Scholar
Xie, L. S. et al. Comparative electronic structures of the chiral helimagnets Cr1/3NbS2 and Cr1/3TaS2. Chem. Mater. 35, 7239–7251 (2023).
Google Scholar
Li, L. J. et al. Fe-doping-induced superconductivity in the charge-density-wave system 1T-TaS2. Eur. Phys. Lett. 97, 67005 (2012).
Google Scholar
Wu, S. et al. Discovery of charge order in the transition metal dichalcogenide FexNbS2. Phys. Rev. Lett. 131, 186701 (2023).
Google Scholar
Takagi, H. et al. Spontaneous topological Hall effect induced by non-coplanar antiferromagnetic order in intercalated van der Waals materials. Nat. Phys. 19, 961–968 (2023).
Google Scholar
Fan, S. et al. Excitations of intercalated metal monolayers in transition metal dichalcogenides. Nano Lett. 21, 99–106 (2021).
Google Scholar
Erodici, M. P. et al. Bridging structure, magnetism, and disorder in iron-intercalated niobium diselenide, FexNbSe2, below x = 0.25. J. Phys. Chem. C 127, 9787–9795 (2023).
Google Scholar
Grasset, R. et al. Pressure-induced collapse of the charge density wave and Higgs mode visibility in 2H-TaS2. Phys. Rev. Lett. 122, 127001 (2019).
Google Scholar
Nair, N. L. et al. Electrical switching in a magnetically intercalated transition metal dichalcogenide. Nat. Mater. 19, 153–157 (2020).
Google Scholar
Little, A. et al. Three-state nematicity in the triangular lattice antiferromagnet Fe1/3NbS2. Nat. Mater. 19, 1062–1067 (2020).
Google Scholar
Yang, S. H. Spintronics on chiral objects. Appl. Phys. Lett. 116, 120502 (2020).
Google Scholar
Amin, O. J. et al. Electrical control of antiferromagnets for the next generation of computing technology. Appl. Phys. Lett. 117, 010501 (2020).
Google Scholar
Mi, M. et al. Two-dimensional magnetic materials for spintronic devices. Mater. Today Nano 24, 100408 (2023).
Google Scholar
Ryzhii, V. et al. Detection of terahertz radiation using topological graphene micro- nanoribbon structures with transverse plasmonic resonant cavities. J. Appl. Phys. 136, 194502 (2024).
Google Scholar
Pistore, V. et al. Near-field probes for sensitive detectorless near-field nanoscopy in the 2.0-4.6 THz range. Appl. Phys. Lett. 124, 221105 (2024).
Google Scholar
Sun, Q.-C. et al. Observation of a Burstein-Moss shift in Re-doped MoS2 nanoparticles. ACS Nano 7, 3506–3511 (2013).
Google Scholar
Gu, Y. et al. Phonon mixing in the charge density wave state of ScV6Sn6. npj Quantum Mater. 8, 58 (2023).
Google Scholar
Grochala, W. et al. The chemical imagination at work in very tight places. Angew. Chem. Int. Ed. 46, 3620–3642 (2007).
Google Scholar
Pei, S. et al. High pressure studies of 2D materials and heterostructures: a review. Mater. Des. 213, 110363 (2022).
Google Scholar
Matsuoka, T. et al. MPX3 van der Waals magnets under pressure (M = Mn, Ni, V, Fe, Co, Cd; X = S, Se). Front. Mater. 11, 1362744 (2024).
Google Scholar
The intercalate layer acts as a cushion for the TaS2 layer. Since we are applying isotropic pressure to the system, the 2D layer of TaS2 is mainly compressed in the ab plane and relieves some of the strain along the c axis, slightly increasing the layer thickness. This trend is obviously very slight.
Choi, C. Q. Three practical uses for topological photonics. IEEE Spectr. 57, 9–10 (2020).
Google Scholar
Yang, Y. et al. Terahertz topological photonics for on-chip communication. Nat. Photonics 14, 446–451 (2020).
Google Scholar
Liu, Y. et al. Flexible broadband teraHertz modulation based on strain-sensitive MXene material. Front. Phys. 9, 670972 (2021).
Google Scholar
Mao, H. K. et al. Specific volume measurements of Cu, Mo, Pd, and Ag and calibration of the ruby R1 fluorescence pressure gauge from 0.06 to 1 Mbar. J. Appl. Phys. 49, 3276–3283 (1976).
Google Scholar
Mao, H. K. et al. Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. J. Geophys. Res. 91, 4673–4676 (1986).
Google Scholar
QuantumATK version R-2020.09.
Smidstrup, S. et al. QuantumATK: An integrated platform of electronic and atomic-scale modelling tools. J. Phys: Condens. Matter 32, 015901 (2020).
Google Scholar
Perdew, J. P. et al. Generalized gradient approximation made simple. Phys. Rev. Lett. 778, 3865 (1996).
Google Scholar
Van Setten, M. J. et al. The PseudoDojo: training and grading a 85 element optimized norm-conserving pseudopotential table. Comput. Phys. Commun. 226, 39 (2018).
Google Scholar
Caldeweyher, E. et al. Extension of the D3 dispersion coefficient model. J. Chem. Phys. 147, 034112 (2017).
Google Scholar
Miyadai, T. et al. Magnetic properties of Cr1/3NbS2. JUPSAU 52, 1394–1401 (1983).
Google Scholar
Ko, K.-T. et al. RKKY ferromagnetism with Ising-like spin states in intercalated Fe1/4TaS22. Phys. Rev. Lett. 107, 247201 (2011).
Google Scholar