Morello, A. et al. Single-shot readout of an electron spin in silicon. Nature 467, 687–691 (2010).
Google Scholar
Janzen, E. et al. The silicon vacancy in SiC. Phys. B Condens Matter 404, 4354–4358 (2009).
Google Scholar
Pezzagna, S. & Meijer, J. Quantum computer based on color centers in diamond. Appl. Phys. Rev. 8, 011308 (2021).
Google Scholar
Cavenett, B. Optically detected magnetic resonance (O.D.M.R.) investigations of recombination processes in semiconductors. Adv. Phys. 30, 475–538 (1981).
Google Scholar
Bourgeois, E., Gulka, M. & Nesladek, M. Photoelectric detection and quantum readout of nitrogen-vacancy center spin states in diamond. Adv. Opt. Mater. 8, 1902132 (2020).
Google Scholar
Lepine, D. J. Spin-dependent recombination on silicon surface. Phys. Rev. B 6, 436–441 (1972).
Google Scholar
Stegner, A. R. et al. Electrical detection of coherent 31P spin quantum states. Nat. Phys. 2, 835–838 (2006).
Google Scholar
Niethammer, M. et al. Coherent electrical readout of defect spins in silicon carbide by photo-ionization at ambient conditions. Nat. Commun. 10, 5569 (2019).
Google Scholar
Bourgeois, E. et al. Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nat. Commun. 6, 8577 (2015).
Google Scholar
Boehme, C. & Lips, K. Theory of time-domain measurement of spin-dependent recombination with pulsed electrically detected magnetic resonance. Phys. Rev. B 68, 245105 (2003).
Google Scholar
Siyushev, P. et al. Photoelectrical imaging and coherent spin-state readout of single nitrogen-vacancy centers in diamond. Science 363, 728–731 (2019).
Google Scholar
Klein, K. et al. The electrically detected magnetic resonance microscope: Combining conductive atomic force microscopy with electrically detected magnetic resonance. Rev. Sci. Instrum. 84, 103911 (2013).
Google Scholar
Yang, K. et al. Coherent spin manipulation of individual atoms on a surface. Science 366, 509–512 (2019).
Google Scholar
Homewood, K. P., Cavenett, B. C., Spear, W. E. & LeComber, P. G. Spin effects in p + -i-n + a-Si:H cells; photovoltaic detected magnetic resonance (PDMR). J. Phys. C Solid State Phys. 16, L427–L431 (1983).
Google Scholar
Dittrich, T. Transient surface photovoltage spectroscopy of diamond. AIP Adv. 12, 065206 (2022).
Google Scholar
Rezek, B. & Nebel, C. Kelvin force microscopy on diamond surfaces and devices. Diam. Relat. Mater. 14, 466–469 (2005).
Google Scholar
Chemin, A. et al. Surface-mediated charge transfer of photogenerated carriers in diamond. Small Methods 7, 2300423 (2023).
Google Scholar
Pawlak, R. et al. Local detection of nitrogen-vacancy centers in a nanodiamond monolayer. Nano Lett. 13, 5803–5807 (2013).
Google Scholar
Stehlik, S. et al. Silicon-vacancy centers in ultra-thin nanocrystalline diamond films. Micromachines 9, 281 (2018).
Google Scholar
Beha, K., Batalov, A., Manson, N. B., Bratschitsch, R. & Leitenstorfer, A. Optimum photoluminescence excitation and recharging cycle of single nitrogen-vacancy centers in Ultrapure diamond. Phys. Rev. Lett. 109, 097404 (2012).
Google Scholar
Shields, B., Unterreithmeier, Q., De Leon, N., Park, H. & Lukin, M. Efficient readout of a single spin state in diamond via spin-to-charge conversion. Phys. Rev. Lett. 114, 136402 (2015).
Google Scholar
Wood, A. et al. Room-temperature photochromism of silicon vacancy centers in CVD diamond. Nano Lett. 23, 1017–1022 (2023).
Google Scholar
Jayakumar, H., Lozovoi, A., Daw, D. & Meriles, C. Long-term spin state storage using Ancilla charge memories. Phys. Rev. Lett. 125, 236601 (2020).
Google Scholar
Lozovoi, A. et al. Optical activation and detection of charge transport between individual colour centres in diamond. Nat. Electron. 4, 717–724 (2021).
Google Scholar
Itoh, Y., Sumikawa, Y., Umezawa, H. & Kawarada, H. Trapping mechanism on oxygen-terminated diamond surfaces. Appl. Phys. Lett. 89, 203503 (2006).
Google Scholar
Nesladek, M., Bogdan, A., Deferme, W., Tranchant, N. & Bergonzo, P. Charge transport in high mobility single crystal diamond. Diam. Relat. Mater. 17, 1235–1240 (2008).
Google Scholar
Szunerits, S. & Boukherroub, R. Different strategies for functionalization of diamond surfaces. J. Solid State Electrochem. 12, 1205–1218 (2008).
Google Scholar
Kawai, S. et al. Nitrogen-terminated diamond surface for nanoscale NMR by shallow nitrogen-vacancy centers. J. Phys. Chem. C 123, 3594–3604 (2019).
Google Scholar
Bian, K. et al. Nanoscale electric-field imaging based on a quantum sensor and its charge-state control under ambient condition. Nat. Commun. 12, 2457 (2021).
Google Scholar
Axt, A., Hermes, I. M., Bergmann, V. W., Tausendpfund, N. & Weber, S. A. L. Know your full potential: Quantitative Kelvin probe force microscopy on nanoscale electrical devices. Beilstein J. Nanotechnol. 9, 1809–1819 (2018).
Google Scholar
Bluvstein, D., Zhang, Z. & Jayich, A. C. B. Identifying and mitigating charge instabilities in shallow diamond nitrogen-vacancy centers. Phys. Rev. Lett. 122, 076101 (2019).
Google Scholar
Karim, A., Lyskov, I., Russo, S. P. & Peruzzo, A. Bright ab initio photoluminescence of NV+ in diamond. J. Appl. Phys.130, 234402 (2021).
Google Scholar
Lozovoi, A., Vizkelethy, G., Bielejec, E. & Meriles, C. A. Imaging dark charge emitters in diamond via carrier-to-photon conversion. Sci. Adv. 8, eabl9402 (2022).
Google Scholar
Mahdia, M., Allred, J., Yuan, Z., Rovny, J. & De Leon, N. P. Probing itinerant carrier dynamics at the diamond surface using single nitrogen vacancy centers. Appl. Phys. Lett. 122, 064002 (2023).
Google Scholar
Gulka, M. et al. Pulsed photoelectric coherent manipulation and detection of N-V center spins in diamond. Phys. Rev. Appl. 7, 044032 (2017).
Google Scholar
Stacey, A. et al. Evidence for primal sp 2 defects at the diamond surface: Candidates for electron trapping and noise sources. Adv. Mater. Interfaces 6, 1801449 (2019).
Google Scholar
Shirafuji, J. & Sugino, T. Electrical properties of diamond surfaces. Diam. Relat. Mater. 5, 706–713 (1996).
Google Scholar
Zheng, W. et al. Coherence enhancement of solid-state qubits by local manipulation of the electron spin bath. Nat. Phys. 18, 1317–1323 (2022).
Google Scholar
Hrubesch, F. M., Braunbeck, G., Stutzmann, M., Reinhard, F. & Brandt, M. S. Efficient electrical spin readout of NV – centers in diamond. Phys. Rev. Lett. 118, 037601 (2017).
Google Scholar
Dittrich, T., Fengler, S. & Franke, M. Transient surface photovoltage measurement over 12 orders of magnitude in time. Revi. Sci. Instrum. 88, 053904 (2017).
Google Scholar
Appel, P. et al. Fabrication of all diamond scanning probes for nanoscale magnetometry. Rev. Sci. Instrum. 87, 063703 (2016).
Google Scholar
Striebel, F. T.Engineering of Diamond for integrated Quantum Optics and Magnetometry. (Master’s thesis, Ulm University, Ulm 2012).
Trofimov, S. & Naydenov, B. Combined Confocal-Atomic-Force Microscope Setup for Quantum Sensing Applications with Sub-diffractional Spatial Resolution. Phys. Status Solidi A 222, 2400541 (2024).
Binder, J. M. et al. Qudi: A modular python suite for experiment control and data processing. SoftwareX 6, 85–90 (2017).
Google Scholar
Razinkovas, L., Maciaszek, M., Reinhard, F., Doherty, M. W. & Alkauskas, A. Photoionization of negatively charged NV centers in diamond: Theory and ab initio calculations. Phys. Rev. B 104, 235301 (2021).
Google Scholar