Leinert, J. L., Weichert, S., Jordan, A. J. & Adam, R. Non-Typhoidal Salmonella Infection in Children: Influence of Antibiotic Therapy on Postconvalescent Excretion and Clinical Course—A Systematic Review. Antibiotics 10, 1187 (2021).
Google Scholar
Ishikawa, N. K. et al. Determination of tylosin excretion from sheep to assess tylosin spread to agricultural fields by manure application. Sci. Total Environ. 633, 399–404 (2018).
Google Scholar
Huang, F. et al. Removal of antibiotic resistance genes during livestock wastewater treatment processes: Review and prospects. Front Vet. Sci. 2022;9.
Yang, Y. et al. Profiles of bacteria/phage-comediated ARGs in pig farm wastewater treatment plants in China: Association with mobile genetic elements, bacterial communities and environmental factors. J. Hazard Mater. 404, 124149 (2021).
Google Scholar
Yang, Y. et al. The fate of antibiotic resistance genes and their association with bacterial and archaeal communities during advanced treatment of pig farm wastewater. Sci. Total Environ. 851, 158364 (2022).
Google Scholar
Zhang, D. W. et al. Metagenomic Survey Reveals More Diverse and Abundant Antibiotic Resistance Genes in Municipal Wastewater Than Hospital Wastewater. Front Microbiol. 2021;12.
Marano, R., Zolti, A., Jurkevitch, E., Cytryn, E. Antibiotic resistance and class 1 integron gene dynamics along effluent, reclaimed wastewater irrigated soil, crop continua: elucidating potential risks and ecological constraints. Water Res. 164 (2019).
Zhu, N. et al. Fate and driving factors of antibiotic resistance genes in an integrated swine wastewater treatment system: From wastewater to soil. Sci. Total Environ. 721 (2020).
Yang, Y., Liu, Z., Xing, S. & Liao, X. The correlation between antibiotic resistance gene abundance and microbial community resistance in pig farm wastewater and surrounding rivers. Ecotoxicol. Environ. Saf. 182, 109452 (2019).
Google Scholar
Barkovskii, A. L., Manoylov, K. M. & Bridges, C. Positive and negative selection towards tetracycline resistance genes in manure treatment lagoons. J. Appl. Microbiol. 112, 907–919 (2012).
Google Scholar
Shen, Y. P. et al. Transfer of antibiotic resistance genes from soil to wheat: Role of host bacteria, impact on seed-derived bacteria, and affecting factors. Sci Total Environ. 905 (2023).
Wang, C. et al. Prevalence of antibiotic resistance genes and bacterial pathogens along the soil-mangrove root continuum. J. Hazard Mater. 408 (2021).
Yang, Y. et al. Dominant denitrifying bacteria are important hosts of antibiotic resistance genes in pig farm anoxic-oxic wastewater treatment processes. Environ. Int. 143, 105897 (2020).
Google Scholar
Du, L. et al. Removal performance of antibiotics and antibiotic resistance genes in swine wastewater by integrated vertical-flow constructed wetlands with zeolite substrate. Sci. Total Environ. 2020;721.
Du, L., Zhao, Y. Q., Wang, C., Wu, Z. B. & Zhou, Q. H. Effects of plant on denitrification pathways in integrated vertical-flow constructed wetland treating swine wastewater. Ecotoxicol Environ Saf. 2020;201.
Liu, Y. et al. Nonpathogenic Pseudomonas syringae derivatives and its metabolites trigger the plant “cry for help” response to assemble disease suppressing and growth promoting rhizomicrobiome. Nat. Commun. 15, 1907 (2024).
Google Scholar
Pascuan, C., Fox, A. R., Soto, G. & Ayub, N. D. Exploring the ancestral mechanisms of regulation of horizontally acquired nitrogenases. J. Mol. Evol. 81, 84–89 (2015).
Google Scholar
Sanow, S. et al. Molecular mechanisms of Pseudomonas-assisted plant nitrogen uptake: opportunities for modern agriculture. Mol Plant Microbe Interact. (2023).
Zheng, Y. et al. Purines enrich root-associated Pseudomonas and improve wild soybean growth under salt stress. Nat. Commun. 15, 3520 (2024).
Google Scholar
Oliver, A., Canton, R., Campo, P., Baquero, F. & Blazquez, J. High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Sci. (N. Y., N. Y.) 288, 1251–1254 (2000).
Google Scholar
Fisher, R. A., Gollan, B. & Helaine, S. Persistent bacterial infections and persister cells. Nat. Rev. Microbiol. 15, 453–464 (2017).
Google Scholar
Thomassen, G., Reiche, T., Tennfjord, C. E. & Mehli, L. Antibiotic resistance properties among Pseudomonas spp. associated with salmon processing environments. Microorganisms. 2022;10.
Flores Ribeiro, A. et al. Occurrence of multi-antibiotic resistant Pseudomonas spp. in drinking water produced from karstic hydrosystems. Sci. Total Environ. 490, 370–378 (2014).
Google Scholar
Otero, J. A., Ferreiro, J., Rivo, A. S. & Aguado, J. D. Outpatient parenteral antimicrobial therapy with ceftolozane/tazobactam via continuous infusion for multidrug-resistant Pseudomonas aeruginosa osteomyelitis. Open Forum Infect Dis. 2020;7.
Mcdonnell, M. J. et al. Non cystic fibrosis bronchiectasis: A longitudinal retrospective observational cohort study of Pseudomonas persistence and resistance. Respir. Med. 109, 716–726 (2015).
Google Scholar
Sanz-Garcia, F., Laborda, P., Ochoa-Sanchez, L. E., Martinez, J. L. & Hernando-Amado, S. The Pseudomonas aeruginosa Resistome: Permanent and Transient Antibiotic Resistance, an Overview. Methods Mol. Biol. 2721, 85–102 (2024).
Cox, G. & Wright, G. D. Intrinsic antibiotic resistance: Mechanisms, origins, challenges and solutions. Int J. Med Microbiol 303, 287–292 (2013).
Google Scholar
Bottery, M. J., Wood, A. J. & Brockhurst, M. A. Temporal dynamics of bacteria-plasmid coevolution under antibiotic selection. ISME J. 13, 559–562 (2019).
Google Scholar
Barrangou, R. et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315, 1709–1712 (2007).
Google Scholar
Chen, H. Y., Mai, H. R., Lopes, B., Wen, F. Q. & Patil, S. Novel Pseudomonas aeruginosa strains co-harbouring blaNDM-1 Metallo β-lactamase and mcr–1 Isolated from immunocompromised paediatric patients. Infect. Drug Resist. 15, 2929–2936 (2022).
Google Scholar
Meng, S. S. et al. Archaeal communities of South China mangroves and their potential roles in the nitrogen cycle. Geomicrobiol. J. 39, 697–704 (2022).
Google Scholar
Kieft, K. et al. Ecology of inorganic sulfur auxiliary metabolism in widespread bacteriophages. Nat Commun. 2021;12.
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
Google Scholar
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
Google Scholar
Li, D., Liu, C., Luo, R., Sadakane, K. & Lam, T. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676 (2015).
Google Scholar
Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinforma. 11, 119 (2010).
Google Scholar
Li, W. & Godzik, A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006).
Google Scholar
Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417–419 (2017).
Google Scholar
Wood, D. E., Salzberg, S. L. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 2014;15.
Tang, X., Shang, J., Ji, Y. & Sun, Y. PLASMe: a tool to identify PLASMid contigs from short-read assemblies using transformer. Nucleic Acids Res. 51, e83 (2023).
Google Scholar
Yang, Y. et al. Pet cats may shape the antibiotic resistome of their owner’s gut and living environment. Microbiome 11, 235 (2023).
Google Scholar
Alcock, B. P. et al. CARD 2023: expanded curation, support for machine learning, and resistome prediction at the Comprehensive Antibiotic Resistance Database. Nucleic Acids Res. 51, D690–D699 (2023).
Google Scholar
Tu, Q., Lin, L., Cheng, L., Deng, Y. & He, Z. NCycDB: a curated integrative database for fast and accurate metagenomic profiling of nitrogen cycling genes. Bioinformatics 35, 1040–1048 (2019).
Google Scholar
Yin, X. et al. ARGs-OAP v2.0 with an expanded SARG database and Hidden Markov Models for enhancement characterization and quantification of antibiotic resistance genes in environmental metagenomes. Bioinformatics 34, 2263–2270 (2018).
Google Scholar
Kang, D. et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ. 2019;7.
Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).
Google Scholar
Chaumeil, P., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk v2: memory friendly classification with the genome taxonomy database. Bioinformatics. 2022.
Parks, D. H. et al. GTDB: an ongoing census of bacterial and archaeal diversity through a phylogenetically consistent, rank normalized and complete genome-based taxonomy. Nucleic Acids Res. 50, D785–D794 (2022).
Google Scholar
Uritskiy, G. V., Diruggiero, J. & Taylor, J. MetaWRAP—a flexible pipeline for genome-resolved metagenomic data analysis. Microbiome. 2018;6.
Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29, 130–644 (2011).
Google Scholar
Liang, J. et al. Hidden diversity and potential ecological function of phosphorus acquisition genes in widespread terrestrial bacteriophages. Nat. Commun. 15, 2827 (2024).
Google Scholar
Wick, R. R., Judd, L. M., Gorrie, C. L., Holt, K. E. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol. 2017;13.
Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).
Google Scholar
Song W. Z., Wemheuer B., Zhang S., Steensen K., Thomas T. MetaCHIP: community-level horizontal gene transfer identification through the combination of best-match and phylogenetic approaches. Microbiome. 2019;7.
Letunic, I. & Bork, P. Interactive Tree Of Life v2: online annotation and display of phylogenetic trees made easy. Nucleic Acids Res. 39, W475–W478 (2011).
Google Scholar