Randall, C. A., Fan, Z., Reaney, I., Chen, L.-Q. & Trolier-McKinstry, S. Antiferroelectrics: history, fundamentals, crystal chemistry, crystal structures, size effects, and applications. J. Am. Ceram. Soc. 104, 3775–3810 (2021).
Google Scholar
Zhang, M.-H., Fulanović, L., Zhao, C. & Koruza, J. Review on field-induced phase transitions in lead-free NaNbO3-based antiferroelectric perovskite oxides for energy storage. J. Materiomics 9, 1–18 (2023).
Google Scholar
Megaw, H. D. The seven phases of sodium niobate. Ferroelectrics 7, 87–89 (1974).
Google Scholar
Lines, M. E. & Glass, A. M. Principles and Applications of Ferroelectrics and Related Materials (Oxford Univ. Press, 2001).
Google Scholar
Chen, J. & Feng, D. TEM study of phases and domains in NaNbO3 at room temperature. Phys. Stat. Sol. (A) 109, 171–185 (1988).
Google Scholar
Darlington, C. N. W. & Knight, K. S. On the lattice parameters of sodium niobate at room temperature and above. Phys. B 266, 368–372 (1999).
Google Scholar
Yuzyuk, Y. I. et al. Modulated phases in NaNbO3: Raman scattering, synchrotron X-ray diffraction, and dielectric investigations. J. Phys. Condens. Matter 17, 4977–4990 (2005).
Google Scholar
Mishra, S. K., Mittal, R., Pomjakushin, V. Y. & Chaplot, S. L. Phase stability and structural temperature dependence in sodium niobate: a high-resolution powder neutron diffraction study. Phys. Rev. B 83, 134105 (2011).
Google Scholar
Cheon, C. I. et al. Monoclinic ferroelectric NaNbO3 at room temperature: crystal structure solved by using super high resolution neutron powder diffraction. Mater. Lett. 156, 214–219 (2015).
Google Scholar
Schwarzkopf, J. et al. Strain-induced phase transitions in epitaxial NaNbO3 thin films grown by metal–organic chemical vapour deposition. J. Appl. Cryst. 45, 1015–1023 (2012).
Google Scholar
Patel, K., Prosandeev, S., Xu, B., Xu, C. & Bellaiche, L. Properties of (001) NaNbO3 films under epitaxial strain: a first-principles study. Phys. Rev. B 103, 094103 (2021).
Google Scholar
Bin Anooz, S. et al. High temperature phase transitions in NaNbO3 epitaxial films grown under tensile lattice strain. Appl. Phys. Lett. 120, 202901 (2022).
Google Scholar
Schneider, T. et al. Evidence for antipolar displacements in NaNbO3 thin films. Appl. Phys. Lett. 121, 122906 (2022).
Google Scholar
Xu, R. et al. Size-induced ferroelectricity in antiferroelectric oxide membranes. Adv. Mater. 35, 2210562 (2023).
Google Scholar
Schmidbauer, M. et al. Ferroelectric domain structure of NaNbO3 epitaxial thin films grown on (110) DyScO3 substrates. Phys. Stat. Sol. RRL 8, 522–526 (2014).
Google Scholar
Liu, H. et al. Giant piezoelectricity in oxide thin films with nanopillar structure. Science 369, 292–297 (2020).
Google Scholar
Krogstad, M. J. et al. The relation of local order to material properties in relaxor ferroelectrics. Nat. Mater. 17, 718–724 (2018).
Google Scholar
Goodenough, J. B. Theory of the role of covalence in the perovskite-type manganites [La, M(ii)]MnO3. Phys. Rev. 100, 564–573 (1955).
Google Scholar
van den Brink, J. & Khomskii, D. I. Multiferroicity due to charge ordering. J. Phys. Condens. Matter 20, 434217 (2008).
Google Scholar
Abrahams, S. C., Kurtz, S. K. & Jamieson, P. B. Atomic displacement relationship to Curie temperature and spontaneous polarization in displacive ferroelectrics. Phys. Rev. 172, 551 (1968).
Google Scholar
Jia, C. L. et al. Unit-cell scale mapping of ferroelectricity and tetragonality in epitaxial ultrathin ferroelectric films. Nat. Mater. 6, 64–69 (2007).
Google Scholar
Nelson, C. T. et al. Spontaneous vortex nanodomain arrays at ferroelectric heterointerfaces. Nano Lett. 11, 828–834 (2011).
Google Scholar
Maiden, A. M., Humphry, M. J. & Rodenburg, J. M. Ptychographic transmission microscopy in three dimensions using a multi-slice approach. J. Opt. Soc. Am. A 29, 1606–1614 (2012).
Google Scholar
Chen, Z. et al. Electron ptychography achieves atomic-resolution limits set by lattice vibrations. Science 372, 826–831 (2021).
Google Scholar
Zhong, W. & Vanderbilt, D. Competing structural instabilities in cubic perovskites. Phys. Rev. Lett. 74, 2587–2590 (1995).
Google Scholar
Benedek, N. A. & Fennie, C. J. Why are there so few perovskite ferroelectrics? J. Phys. Chem. C 117, 13339–13349 (2013).
Google Scholar
Bosch, E. G. T. & Lazić, I. Analysis of depth-sectioning STEM for thick samples and 3D imaging. Ultramicroscopy 207, 112831 (2019).
Google Scholar
Chen, Z., Shao, Y.-T., Jiang, Y. & Muller, D. Three-dimensional imaging of single dopants inside crystals using multislice electron ptychography. Microsc. Microanal. 27, 2146–2148 (2021).
Google Scholar
Sha, H. et al. Sub-nanometer-scale mapping of crystal orientation and depth-dependent structure of dislocation cores in SrTiO3. Nat. Commun. 14, 162 (2023).
Google Scholar
Zhu, M. et al. Insights into chemical and structural order at planar defects in Pb2MgWO6 using multislice electron ptychography. ACS Nano 19, 5568–5576 (2025).
Google Scholar
Mishra, S. K. et al. Phonon dynamics and inelastic neutron scattering of sodium niobate. Phys. Rev. B 89, 184303 (2014).
Google Scholar
Tomeno, I., Tsunoda, Y., Oka, K., Matsuura, M. & Nishi, M. Lattice dynamics of cubic NaNbO3: an inelastic neutron scattering study. Phys. Rev. B 80, 104101 (2009).
Google Scholar
Kimoto, K. et al. Local crystal structure analysis with several picometer precision using scanning transmission electron microscopy. Ultramicroscopy 110, 778–782 (2010).
Google Scholar
Cui, J., Yao, Y., Wang, Y. G., Shen, X. & Yu, R. C. Origin of atomic displacement in HAADF image of the tilted specimen. Ultramicroscopy 182, 156–162 (2017).
Google Scholar
Smeaton, M. A., Schnitzer, N., Zheng, H., Mitchell, J. F. & Kourkoutis, L. F. Influence of light atoms on quantification of atomic column positions in distorted perovskites with HAADF-STEM. Nano Lett. 23, 6393–6398 (2023).
Google Scholar
Zhou, D. et al. Sample tilt effects on atom column position determination in ABF–STEM imaging. Ultramicroscopy 160, 110–117 (2016).
Google Scholar
Gao, P. et al. Picometer-scale atom position analysis in annular bright-field STEM imaging. Ultramicroscopy 184, 177–187 (2018).
Google Scholar
Close, R., Chen, Z., Shibata, N. & Findlay, S. D. Towards quantitative, atomic-resolution reconstruction of the electrostatic potential via differential phase contrast using electrons. Ultramicroscopy 159, 124–137 (2015).
Google Scholar
Bürger, J., Riedl, T. & Lindner, J. K. N. Influence of lens aberrations, specimen thickness and tilt on differential phase contrast STEM images. Ultramicroscopy 219, 113118 (2020).
Google Scholar
Polo-Garzon, F., Bao, Z., Zhang, X., Huang, W. & Wu, Z. Surface reconstructions of metal oxides and the consequences on catalytic chemistry. ACS Catal. 9, 5692–5707 (2019).
Google Scholar
Matzdorf, R. et al. Ferromagnetism stabilized by lattice distortion at the surface of the p-wave superconductor Sr2RuO4. Science 289, 746–748 (2000).
Google Scholar
Findlay, S. D. et al. Dynamics of annular bright field imaging in scanning transmission electron microscopy. Ultramicroscopy 110, 903–923 (2010).
Google Scholar
Harikrishnan, K. P. et al. Separating surface relaxations from bulk structure with multislice ptychography. Microsc. Microanal. 30, ozae044.748 (2024).
Google Scholar
Glazer, A. M. The classification of tilted octahedra in perovskites. Acta Cryst. B28, 3384–3392 (1972).
Google Scholar
Guo, H., Shimizu, H. & Randall, C. A. Direct evidence of an incommensurate phase in NaNbO3 and its implication in NaNbO3-based lead-free antiferroelectrics. Appl. Phys. Lett. 107, 112904 (2015).
Google Scholar
Howard, C. J., Withers, R. L., Knight, K. S. & Zhang, Z. (Ca0.37Sr0.63)TiO3 perovskite—an example of an unusual class of tilted perovskites. J. Phys. Condens. Matter 20, 135202 (2008).
Google Scholar
Yang, Y., Xu, B., Xu, C., Ren, W. & Bellaiche, L. Understanding and revisiting the most complex perovskite system via atomistic simulations. Phys. Rev. B 97, 174106 (2018).
Google Scholar
Rondinelli, J. M., May, S. J. & Freeland, J. W. Control of octahedral connectivity in perovskite oxide heterostructures: an emerging route to multifunctional materials discovery. MRS Bull. 37, 261–270 (2012).
Google Scholar
Liao, Z. et al. Controlled lateral anisotropy in correlated manganite heterostructures by interface-engineered oxygen octahedral coupling. Nat. Mater. 15, 425–431 (2016).
Google Scholar
Caretta, L. et al. Non-volatile electric-field control of inversion symmetry. Nat. Mater. 22, 207–215 (2023).
Google Scholar
Tate, M. W. et al. High dynamic range pixel array detector for scanning transmission electron microscopy. Microsc. Microanal. 22, 237–249 (2016).
Google Scholar
Thibault, P. & Guizar-Sicairos, M. Maximum-likelihood refinement for coherent diffractive imaging. New J. Phys. 14, 063004 (2012).
Google Scholar
Wakonig, K. et al. PtychoShelves, a versatile high-level framework for high-performance analysis of ptychographic data. J. Appl. Cryst. 53, 574–586 (2020).
Google Scholar
Thibault, P. & Menzel, A. Reconstructing state mixtures from diffraction measurements. Nature 494, 68–71 (2013).
Google Scholar
Chen, Z. et al. Mixed-state electron ptychography enables sub-angstrom resolution imaging with picometer precision at low dose. Nat. Commun. 11, 2994 (2020).
Google Scholar
Zhang, C. et al. Bayesian optimization for multi-dimensional alignment: tuning aberration correctors and ptychographic reconstructions. Microsc. Microanal. 28, 3146–3148 (2022).
Google Scholar
Nord, M., Vullum, P. E., MacLaren, I., Tybell, T. & Holmestad, R. Atomap: a new software tool for the automated analysis of atomic resolution images using two-dimensional Gaussian fitting. Adv. Struct. Chem. Imaging 3, 9 (2017).
Google Scholar
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).
Google Scholar
Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).
Google Scholar
Perdew, J. P. et al. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008).
Google Scholar
Stokes, H. T., Hatch, D. M. & Campbell, B. J. ISODISTORT, ISOTROPY software suite; https://stokes.byu.edu/iso/isodistort.php
Campbell, B. J., Stokes, H. T., Tanner, D. E. & Hatch, D. M. ISODISPLACE: a web-based tool for exploring structural distortions. J. Appl. Cryst. 39, 607–614 (2006).
Google Scholar
Gonze, X. Adiabatic density-functional perturbation theory. Phys. Rev. A 52, 1096–1114 (1995).
Google Scholar
Gonze, X. & Lee, C. Dynamical matrices, Born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory. Phys. Rev. B 55, 10355–10368 (1997).
Google Scholar
Baroni, S., de Gironcoli, S., Dal Corso, A. & Giannozzi, P. Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 73, 515–562 (2001).
Google Scholar
Togo, A., Chaput, L., Tadano, T. & Tanaka, I. Implementation strategies in phonopy and phono3py. J. Phys. Condens. Matter 35, 353001 (2023).
Google Scholar
Allen, L. J., D’Alfonso, A. J. & Findlay, S. D. Modelling the inelastic scattering of fast electrons. Ultramicroscopy 151, 11–22 (2015).
Google Scholar
Padgett, E. et al. The exit-wave power-cepstrum transform for scanning nanobeam electron diffraction: robust strain mapping at subnanometer resolution and subpicometer precision. Ultramicroscopy 214, 112994 (2020).
Google Scholar
Harikrishnan, K. P. et al. Dose-efficient strain mapping with high precision and throughput using cepstral transforms on 4D-STEM data. Microsc. Microanal. 27, 1994–1996 (2021).
Google Scholar
Yoon, D., Harikrishnan, K. P., Shao, Y.-T. & Muller, D. A. High-speed, high-precision, and high-throughput strain mapping with cepstral transformed 4D-STEM data. Microsc. Microanal. 28, 796–798 (2022).
Google Scholar
Harikrishnan K. P. Datasets for ‘Electron ptychography reveals a ferroelectricity dominated by anion displacements’. Zenodo https://doi.org/10.5281/zenodo.13787851 (2024).