García Molinos, J. et al. Climate velocity and the future global redistribution of marine biodiversity. Nat. Clim. Change 6, 83–88 (2016).
Google Scholar
Global Biodiversity Outlook 5 (CBD, 2020); https://www.cbd.int/gbo5
Sunday, J. M., Bates, A. E. & Dulvy, N. K. Thermal tolerance and the global redistribution of animals. Nat. Clim. Change 2, 686–690 (2012).
Google Scholar
Fuchs, H. L. et al. Wrong-way migrations of benthic species driven by ocean warming and larval transport. Nat. Clim. Change 10, 1052–1056 (2020).
Google Scholar
Tittensor, D. P. et al. Global patterns and predictors of marine biodiversity across taxa. Nature 466, 1098–1101 (2010).
Google Scholar
Petsas, P., Doxa, A., Almpanidou, V. & Mazaris, A. D. Global patterns of sea surface climate connectivity for marine species. Commun. Earth Environ. 3, 240 (2022).
Google Scholar
Pörtner, H.-O. et al. Overcoming the coupled climate and biodiversity crises and their societal impacts. Science 380, eabl4881 (2023).
Google Scholar
McMahon, K. W., Berumen, M. L. & Thorrold, S. R. Linking habitat mosaics and connectivity in a coral reef seascape. Proc. Natl. Acad. Sci. (USA) 109, 15372–15376 (2012).
Google Scholar
Brito-Morales, I. et al. Climate velocity can inform conservation in a warming world. Trends Ecol. Evol. 33, 441–457 (2018).
Google Scholar
Dobrowski, S. Z. & Parks, S. A. Climate change velocity underestimates climate change exposure in mountainous regions. Nat. Commun. 7, 12349 (2016).
Google Scholar
Halpern, B. S. et al. The environmental footprint of global food production. Nat. Sustain. 5, 1027–1039 (2022).
Google Scholar
Brito-Morales, I. et al. Towards climate-smart, three-dimensional protected areas for biodiversity conservation in the high seas. Nat. Clim. Change 12, 402–407 (2022).
Google Scholar
Moore, J. K. et al. Sustained climate warming drives declining marine biological productivity. Science 359, 1139–1143 (2018).
Google Scholar
Stramma, L., Schmidtko, S., Levin, L. A. & Johnson, G. C. Ocean oxygen minima expansions and their biological impacts. Deep Sea Res. I 57, 587–595 (2010).
Google Scholar
Levin, L. A. & Le Bris, N. The deep ocean under climate change. Science 350, 766–768 (2015).
Google Scholar
McRae, B. H., Hall, S. A., Beier, P. & Theobald, D. M. Where to restore ecological connectivity? Detecting barriers and quantifying restoration benefits. Plos ONE 7, 12 (2012).
Google Scholar
Nuñez, T. A. et al. Connectivity planning to address climate change. Conserv. Biol. 27, 407–416 (2013).
Google Scholar
Senior, R. A., Hill, J. K. & Edwards, D. P. Global loss of climate connectivity in tropical forests. Nat. Clim. Change 9, 623–626 (2019).
Google Scholar
McGuire, J. L., Lawler, J. J., McRae, B. H., Nuñez, T. A. & Theobald, D. M. Achieving climate connectivity in a fragmented landscape. Proc. Natl. Acad. Sci. (USA) 113, 7195–7200 (2016).
Google Scholar
Kaschner, K. et al. AquaMaps: Predicted Range Maps for Aquatic Species v.10 (AquaMaps, 2019).
Jorda, G. et al. Ocean warming compresses the three-dimensional habitat of marine life. Nat. Ecol. Evol. 4, 109–114 (2020).
Google Scholar
Braun, C. D. et al. The functional and ecological significance of deep diving by large marine predators. Annu. Rev. Mar. Sci. 14, 129–159 (2022).
Google Scholar
Brito-Morales, I. et al. Climate velocity reveals increasing exposure of deep-ocean biodiversity to future warming. Nat. Clim. Change 10, 576–581 (2020).
Google Scholar
Coelho, M. T. P. et al. The geography of climate and the global patterns of species diversity. Nature 622, 537–544 (2023).
Google Scholar
Pigot, A. L., Merow, C., Wilson, A. & Trisos, C. H. Abrupt expansion of climate change risks for species globally. Nat. Ecol. Evol. 7, 1060–1071 (2023).
Google Scholar
Matthews, H. D. & Wynes, S. Current global efforts are insufficient to limit warming to 1.5 °C. Science 376, 1404–1409 (2022).
A Guide to Inclusive, Equitable and Effective Implementation of Target 3 of the Kunming-Montreal Global Biodiversity Framework (WWF, 2023); https://files.worldwildlife.org/wwfcmsprod/files/Publication/file/3xun63x8q1_GEFF_FINALv2.pdf?_ga=2.247487495.1639772693.1700011683-1272322374.1683771824
Lausche, B., Laur, A. & Collins, M. Marine Connectivity Conservation Rules of Thumb for MPA and MPA Network Design (MCWG, 2021); https://doi.org/10.53847/jxqa6585
Wang, W. L. et al. Biological carbon pump estimate based on multidecadal hydrographic data. Nature 624, 579–585 (2023).
Google Scholar
Boyd, P. W., Claustre, H., Levy, M., Siegel, D. A. & Weber, T. Multi-faceted particle pumps drive carbon sequestration in the ocean. Nature 568, 327–335 (2019).
Google Scholar
Ratnarajah, L. et al. Monitoring and modelling marine zooplankton in a changing climate. Nat. Commun. 14, 564 (2023).
Google Scholar
Benedetti, F. et al. Major restructuring of marine plankton assemblages under global warming. Nat. Commun. 12, 5226 (2021).
Google Scholar
The GEBCO_2021 Grid—A Continuous Terrain Model of the Global Oceans and Land (NERC EDS British Oceanographic Data Centre NOC, 2021); https://doi.org/10.5285/c6612cbe-50b3-0cff-e053-6c86abc09f8f
How Far Does Light Travel in the Ocean? (NOAA, 2021); https://oceanservice.noaa.gov/facts/light_travel.html
Rogers, A. D. Environmental change in the deep ocean. Annu. Rev. Environ. Resour. 40, 1–38 (2015).
Google Scholar
Wessel, P. & Smith, W. H. A global, self-consistent, hierarchical, high-resolution shoreline database. J. Geophys. Res. Solid Earth 101, 8741–8743 (1996).
Google Scholar
Burrows, M. T. et al. Ocean community warming responses explained by thermal affinities and temperature gradients. Nat. Clim. Change 9, 959–963 (2019).
Google Scholar
Falkowski, P. G., Laws, E. A., Barber, R. T. & Murray, J. W. in Ocean Biogeochemistry: The Role of the Ocean Carbon Cycle in Global Change (ed. Fasham, M. J. R.) 99–121 (Springer, 2003).
O’Neill, B. C. et al. The scenario model intercomparison project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 9, 3461–3482 (2016).
Google Scholar
Riahi, K. et al. The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Change 42, 153–168 (2017).
Google Scholar
Thomson, A. M. et al. RCP4.5: a pathway for stabilization of radiative forcing by 2100. Climatic Change 109, 77–94 (2011).
Google Scholar
Halpern, B. S. et al. Spatial and temporal changes in cumulative human impacts on the world’s ocean. Nat. Commun. 6, 7615 (2015).
Google Scholar
Halpern, B. S. et al. Recent pace of change in human impact on the world’s ocean. Sci. Rep. 9, 11609 (2019).
Google Scholar
Halpern, B. S., Selkoe, K. A., Micheli, F. & Kappel, C. V. Evaluating and ranking the vulnerability of global marine ecosystems to anthropogenic threats. Conserv. Biol. 21, 1301–1315 (2007).
Google Scholar
Halpern, B. S. et al. A global map of human impact on marine ecosystems. Science 319, 948–952 (2008).
Google Scholar
Kavanagh, D., Nuñez, T. & McRae, B. Climate Linkage Mapper Connectivity Analysis Software (Nature Conservancy, 2013).
Nuñez, T. A. Connectivity Planning to Facilitate Species Movements in Response to Climate Change (Univ. of Washington, 2011).
Kinlan, B. P. & Gaines, S. D. Propagule dispersal in marine and terrestrial environments: a community perspective. Ecology 84, 2007–2020 (2003).
Google Scholar
Burrows, M. T. et al. Geographical limits to species-range shifts are suggested by climate velocity. Nature 507, 492–495 (2014).
Google Scholar
Loarie, S. R. et al. The velocity of climate change. Nature 462, 1052–1055 (2009).
Google Scholar
García Molinos, J., Schoeman, D. S., Brown, C. J. & Burrows, M. T. VoCC: an R package for calculating the velocity of climate change and related climatic metrics. Methods Ecol. Evol. 10, 2195–2202 (2019).
Google Scholar
Cheng, L. et al. Improved estimates of ocean heat content from 1960 to 2015. Sci. Adv. 3, e1601545 (2017).
Lin, Y. et al. The dataset of climate connectivity in 2100 and disruption time. figshare https://doi.org/10.6084/m9.figshare.27060730 (2025).
Lin, Y. et al. Codes for climate connectivity model (v1.0). Zenodo https://doi.org/10.5281/zenodo.14271879 (2024).
Lin, Y. et al. Demo data for running climate connectivity. figshare https://doi.org/10.6084/m9.figshare.27061555.v2 (2024).