Sheng, D., Gu, Z.-C., Sun, K. & Sheng, L. Fractional quantum Hall effect in the absence of Landau levels. Nat. Commun. 2, 389 (2011).
Google Scholar
Neupert, T., Santos, L., Chamon, C. & Mudry, C. Fractional quantum Hall states at zero magnetic field. Phys. Rev. Lett. 106, 236804 (2011).
Google Scholar
Tang, E., Mei, J.-W. & Wen, X.-G. High-temperature fractional quantum Hall states. Phys. Rev. Lett. 106, 236802 (2011).
Google Scholar
Regnault, N. & Bernevig, B. A. Fractional Chern insulator. Phys. Rev. 1, 021014 (2011).
Google Scholar
Sun, K., Gu, Z., Katsura, H. & Das Sarma, S. Nearly flatbands with nontrivial topology. Phys. Rev. Lett. 106, 236803 (2011).
Google Scholar
Xiao, D., Zhu, W., Ran, Y., Nagaosa, N. & Okamoto, S. Interface engineering of quantum Hall effects in digital transition metal oxide heterostructures. Nat. Commun. 2, 596 (2011).
Google Scholar
Cai, J. et al. Signatures of fractional quantum anomalous Hall states in twisted MoTe2. Nature 622, 63–68 (2023).
Google Scholar
Zeng, Y. et al. Thermodynamic evidence of fractional Chern insulator in moiré MoTe2. Nature 622, 69–73 (2023).
Google Scholar
Park, H. et al. Observation of fractionally quantized anomalous Hall effect. Nature 622, 74–79 (2023).
Google Scholar
Xu, F. et al. Observation of integer and fractional quantum anomalous Hall effects in twisted bilayer MoTe2. Phys. Rev. 13, 031037 (2023).
Google Scholar
Ji, Z. et al. Local probe of bulk and edge states in a fractional Chern insulator. Nature 635, 578–583 (2024).
Google Scholar
Redekop, E. et al. Direct magnetic imaging of fractional Chern insulators in twisted MoTe2. Nature 635, 584–589 (2024).
Google Scholar
Lu, Z. et al. Fractional quantum anomalous Hall effect in multilayer graphene. Nature 626, 759–764 (2024).
Google Scholar
Li, H., Kumar, U., Sun, K. & Lin, S.-Z. Spontaneous fractional Chern insulators in transition metal dichalcogenide moiré superlattices. Phys. Rev. Res. 3, L032070 (2021).
Google Scholar
Wu, F., Lovorn, T., Tutuc, E., Martin, I. & MacDonald, A. Topological insulators in twisted transition metal dichalcogenide homobilayers. Phys. Rev. Lett. 122, 086402 (2019).
Google Scholar
Zhang, Y.-H., Mao, D., Cao, Y., Jarillo-Herrero, P. & Senthil, T. Nearly flat Chern bands in moiré superlattices. Phys. Rev. B 99, 075127 (2019).
Google Scholar
Devakul, T., Crépel, V., Zhang, Y. & Fu, L. Magic in twisted transition metal dichalcogenide bilayers. Nat. Commun. 12, 6730 (2021).
Google Scholar
Wang, C. et al. Fractional Chern insulator in twisted bilayer MoTe2. Phys. Rev. Lett. 132, 036501 (2024).
Google Scholar
Reddy, A. P., Alsallom, F., Zhang, Y., Devakul, T. & Fu, L. Fractional quantum anomalous Hall states in twisted bilayer MoTe2 and WSe2. Phys. Rev. B 108, 085117 (2023).
Google Scholar
Crépel, V. & Fu, L. Anomalous Hall metal and fractional Chern insulator in twisted transition metal dichalcogenides. Phys. Rev. B 107, L201109 (2023).
Google Scholar
Dong, J., Wang, J., Ledwith, P. J., Vishwanath, A. & Parker, D. E. Composite Fermi liquid at zero magnetic field in twisted MoTe2. Phys. Rev. Lett. 131, 136502 (2023).
Google Scholar
Goldman, H., Reddy, A. P., Paul, N. & Fu, L. Zero-field composite Fermi liquid in twisted semiconductor bilayers. Phys. Rev. Lett. 131, 136501 (2023).
Google Scholar
Wang, T., Devakul, T., Zaletel, M. P. & Fu, L. Diverse magnetic orders and quantum anomalous Hall effect in twisted bilayer MoTe2 and WSe2. Preprint at https://arxiv.org/abs/2306.02501 (2023).
Reddy, A. P. & Fu, L. Toward a global phase diagram of the fractional quantum anomalous Hall effect. Phys. Rev. B 108, 245159 (2023).
Google Scholar
Yu, H., Chen, M. & Yao, W. Giant magnetic field from moiré induced Berry phase in homobilayer semiconductors. Natl Sci. Rev. 7, 12–20 (2020).
Google Scholar
Zhang, X.-W. et al. Polarization-driven band topology evolution in twisted MoTe2 and WSe2. Nat. Commun. 15, 4223 (2024).
Google Scholar
Mao, N. et al. Transfer learning relaxation, electronic structure and continuum model for twisted bilayer MoTe2. Commun. Phys. 7, 262 (2024).
Google Scholar
Jia, Y. et al. Moiré fractional Chern insulators. I. First-principles calculations and continuum models of twisted bilayer MoTe2. Phys. Rev. B 109, 205121 (2024).
Google Scholar
Wang, T. et al. Topology, magnetism and charge order in twisted MoTe2 at higher integer hole fillings. Preprint at https://arxiv.org/abs/2312.12531 (2023).
Wu, Y.-L., Bernevig, B. A. & Regnault, N. Zoology of fractional Chern insulators. Phys. Rev. B 85, 075116 (2012).
Google Scholar
Bernevig, B. A. & Regnault, N. Emergent many-body translational symmetries of abelian and non-abelian fractionally filled topological insulators. Phys. Rev. B 85, 075128 (2012).
Google Scholar
Sterdyniak, A., Repellin, C., Bernevig, B. A. & Regnault, N. Series of abelian and non-abelian states in C > 1 fractional Chern insulators. Phys. Rev. B 87, 205137 (2013).
Google Scholar
Liu, Z., Bergholtz, E. J. & Kapit, E. Non-abelian fractional Chern insulators from long-range interactions. Phys. Rev. B 88, 205101 (2013).
Google Scholar
Lee, C. H., Thomale, R. & Qi, X.-L. Pseudopotential formalism for fractional Chern insulators. Phys. Rev. B 88, 035101 (2013).
Google Scholar
Behrmann, J., Liu, Z. & Bergholtz, E. J. Model fractional Chern insulators. Phys. Rev. Lett. 116, 216802 (2016).
Google Scholar
Chen, F., Luo, W.-W., Zhu, W. & Sheng, D. Robust non-abelian even-denominator fractional Chern insulator in twisted bilayer MoTe2. Preprint at https://arxiv.org/abs/2405.08386 (2024).
Liu, H., Liu, Z. & Bergholtz, E. J. Non-abelian fractional Chern insulators and competing states in flat moiré bands. Preprint at https://arxiv.org/abs/2405.08887 (2024).
Wang, C. et al. Higher Landau-level analogues and signatures of non-abelian states in twisted bilayer MoTe2. Phys. Rev. Lett. (in the press).
Ahn, C.-E., Lee, W., Yananose, K., Kim, Y. & Cho, G. Y. Non-abelian fractional quantum anomalous Hall states and first Landau level physics in second moiré band of twisted bilayer MoTe2. Phys. Rev. B 110, L161109 (2024).
Xu, C., Mao, N., Zeng, T. & Zhang, Y. Multiple Chern bands in twisted MoTe2 and possible non-abelian states. Preprint at https://arxiv.org/abs/2403.17003 (2024).
Reddy, A. P., Paul, N., Abouelkomsan, A. & Fu, L. Non-abelian fractionalization in topological minibands. Phys. Rev. Lett. 133, 166503 (2024).
Google Scholar
Yu, J. et al. Fractional Chern insulators versus nonmagnetic states in twisted bilayer MoTe2. Phys. Rev. B 109, 045147 (2024).
Google Scholar
Xu, C., Li, J., Xu, Y., Bi, Z. & Zhang, Y. Maximally localized Wannier functions, interaction models, and fractional quantum anomalous Hall effect in twisted bilayer MoTe2. Proc. Natl Acad. Sci. USA 121, e2316749121 (2024).
Google Scholar
Abouelkomsan, A., Reddy, A. P., Fu, L. & Bergholtz, E. J. Band mixing in the quantum anomalous Hall regime of twisted semiconductor bilayers. Phys. Rev. B 109, L121107 (2024).
Google Scholar
Anderson, E. et al. Programming correlated magnetic states with gate-controlled moiré geometry. Science 381, 325–330 (2023).
Google Scholar
Nuckolls, K. P. et al. Strongly correlated Chern insulators in magic-angle twisted bilayer graphene. Nature 588, 610–615 (2020).
Google Scholar
Xie, Y. et al. Fractional Chern insulators in magic-angle twisted bilayer graphene. Nature 600, 439–443 (2021).
Google Scholar
Spanton, E. M. et al. Observation of fractional Chern insulators in a van der Waals heterostructure. Science 360, 62–66 (2018).
Google Scholar
Zhang, Y.-H. Vortex spin liquid with fractional quantum spin Hall effect in moiré Chern bands. Phys. Rev. Lett. 133, 106502 (2024).
Google Scholar
May-Mann, J., Stern, A. & Devakul, T. Theory of half-integer fractional quantum spin Hall insulator edges. Preprint at https://arxiv.org/abs/2403.03964 (2024).
Sodemann Villadiego, I. Halperin states of particles and holes in ideal time reversal invariant pairs of Chern bands and the fractional quantum spin Hall effect in moiré MoTe2. Phys. Rev. B 110, 045114 (2024).
Google Scholar
Jian, C.-M. & Xu, C. Minimal fractional topological insulator in half-filled conjugate moiré Chern bands. Preprint at https://arxiv.org/abs/2403.07054 (2024).
Kang, K. et al. Evidence of the fractional quantum spin Hall effect in moiré MoTe2. Nature 628, 522–526 (2024).
Wang, H., Zhang, L., Han, J. & Weinan, E. DeePMD-kit: a deep learning package for many-body potential energy representation and molecular dynamics. Comput. Phys. Commun. 228, 178–184 (2018).
Google Scholar
Zhang, L., Han, J., Wang, H., Car, R. & Weinan, E. Deep potential molecular dynamics: a scalable model with the accuracy of quantum mechanics. Phys. Rev. Lett. 120, 143001 (2018).
Google Scholar
Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).
Google Scholar
Grimme, S. Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).
Google Scholar
Thompson, A. P. et al. LAMMPS–a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 271, 108171 (2022).
Google Scholar
Soler, J. M. et al. The SIESTA method for ab initio order-N materials simulation. J. Phys.: Condens. Matter 14, 2745 (2002).
Google Scholar
Hamann, D. Optimized norm-conserving Vanderbilt pseudopotentials. Phys. Rev. B 88, 085117 (2013).
Google Scholar
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).
Google Scholar
Qiu, W.-X., Li, B., Luo, X.-J. & Wu, F. Interaction-driven topological phase diagram of twisted bilayer MoTe2. Phys. Rev. 13, 041026 (2023).
Google Scholar